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ESTIMATION OF SIZE OF ANIMAL POPULATIONS
BY MARKING EXPERIMENTS

N=500X100=1 000 .
50 '

contains 50 marked members, we would estimate
the population by this equation to be

This method has been employed by a consider­
able number of investigators during the last two
decades to estimate the populations of various or­
ganisms. The method is much older than this
however, having been eniployed as early as 178:3
by the famous French mathematician and scientist
Laplace in estimating the human population of
France. Laplace gave considerable attention to
the theoretical problem of the error involved in
employing this method. This problem attracted
the attention of another famous statistician.
Karl PearsOIi, who published an analysis of it. ,il;
1928. Later' workers in var~ous branches of
zoology seem to have overlooked Pearson's work
and also that of their zoological contemporaries.
They have apparently ofton "rediscovered" the
same method, but have in the main given little or
no attention to the problem of the accuracy of the
resulting estimate.

Laplace determined from a sample the ratio of
births in·a ye~ to the population producing those
births, and then ascertained the number of births
in a -year in each urban and rural district of
France j by multiplying the number of births bv .
.the ratio of population to births determined froI;1
the sample, he arrived at an estimate of the total
population. Laplace was led to consider also the
error inherent in his estimate. This problem, as
~estated by Pearson (1928), but using my notation,
IS as follows: "A population of unknown size N is
known to contain T affected or marked members.
!t is d'esired to ascertain-on the hypothesis of
lllverse probabilities-a measure 9£ the error

introduced by estimating N to 'be n ~, where tis

nTN=-t (1)

SIMPLE CASE

If, for example, we know t,here are 100 marked
members in the population, m{d a sample of 500

By MILNER B. SCHAEFER, Fishery Research Biologist

Determination of population numbers is basic
to studies of changes in populations of animals
and of the causes of the changes, 'such as the
effects of fishing on a population of fishes. For
many animals this cannot be accomplished by
direct enumeration, and recourse must be had to
indirect methods. One technique which has
been eh'lployed in the study of fishes, and other
organisms as well, and which is still in course of
developmcnt, is the usc of markcd members to
estimate population numbers.

THE PROBLEM

The simplest case with which we have to deal
~nd which can be applied to many fish populations:
IS where we have a population containing N
members (unknown) which is known to contain T
marked members and U=N-T u~arked, and
where we have drawn a single representative
sample of n members containing t marked and
u=n-t unmarked. The term "representative" is
used here to mean that the character estimated
from the sample ,,:ill-have a m'~an value ih repe~ted

samples equal to the population value. This cor­
responds with the commonly accepted sense of the
ten.H, and also ",ith its usage by Neyman (1934).
A sImI;>le random sample of the population is repre­
sentatIve, but so also may be various others.

The problem of estimating N consists in makinO'
such an estimate given T and the sample value:
n, t, and u. The usual basis of procedure is to

t N n. .. I .accap T =7 mtUItive y and to estimate N by the

equatioIJ.
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the mean value is

N=u+T+u(T-t) nT ( )t t ..• •• 3

UN=(100X450X 150X500)!= 164
503

N= +T+(U+1)(T-t+1). (4)
u (t"-2)' •..

(7)
2 Tu(T-t)(t+u)

UN t3

and

This estimate of U N
2 is different from and smaller

tha~ that of Laplace, the disagreement being
,attrIbuted by Pearson to Laplace's taking his
sampled population as if it were a second sample
independent of that already taken.

For the example employed before, with T= 100,
11.=500, t=50, formula 7 would give

- ,." nt
N=N=- (6)t •••

where t, u, and Tare aU large, Laplace's case,

_(100 X 450X50X500)! 9
UN- 503 . = 5

Pearson's paper seems to have been generally
overlooked by zoologists dealing with "similar
problems.

. SOME APPLICATIONS IN THE LITERATURE

Formula 1 has been applied to the estimation of
diverse animal populations. One of the best
known of these applications is the so-called Lincoln
index of the duck population of North America de­
veloped by Lincoln (1930), and mentioned in the
textbook of Leopold (1935), the monograph of
Kendeigh (1944), the manual of Wright (1.939),
and elsewhere. Lincoln used the ducks banded at
stations in North America as his marked members,
and t,he kill by hunters as his sample of the popula­
tion. The inaccuracies of kill records and the in­
complete return of bands were recognized a.c;
sources of errors. No attempt was made to esti­
mate the statistical error.

An application of this method was made by Vor­
hies and Taylor (1933). These workers con~puted
the number of jack rabbits on fenced cattle ranges
of Arizona by taking the ratio of jack rabbits seen
to the number of cattle seen in a strip of width
equal to the apparent flushing distance of tlw
jack rabbits, and comparing this ratio with the
known number of cattle on the range. In this
case, .the cattle would represent the "marked"
members of the population of rabbits plus cattle.
It seems. rather doubtful whether the ratio in the
sample would be a fair estimate of the ratio in
.the population because of the obviously different

. (5)

.. (2)
Tu(T+t) (t+u)

fl "

(1£+ 1) (T-t+ 1) (1/.-1) (T-l)
(t-2)2 (t-3)

and the variance is

whe~e the numbers are alllm·ge.
For the preceding example, where T= 100,

n=500, and t=50, Laplace's solution would give
nn estimate of standm'd deviation

the number of marked individuals in a sample of
size n." Laplace" treated this problem as an urn
problem, with an infinite number of blaek and
white balls representing marked and unmarked
members. On the bnsis of an extension of Bayes'
theorem, he predicted from a first sample of t
and n observed what a second sample with known
T but unknown N might produce. He found
that the mean value of N would be equal to
Tn' f T-t- I ,n, and t are all large. He also took the

dist,l'ibution of N t,o be normal about ~n as mean

with standard deviation estimated by

Penl'son reexamined this problem in his 19~8

paper because he felt Laplace's urn statement did
not fit the actunl problem since ""Weare not
t;aking a second sample from an infinite population.
We have only one sample and we want to learn
something about the population from which it
has been sampled, which is finite in extent,
although its extent is unknown. We do know,
however, that it contains T white balls; i. e.,
births in all France."

Assuming the sample n to be a random sample
of the finite population N, and on the basis of
inverse probabilities (Bayes' theorem), Pearson
finds that, the modal value of the distribution of
the possible values of N is
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X=900

visibility of cows and rabbits, even in a narrow
st.rip.

Jackson (1933) developed a method of comput.,;
ing the population of tsetse flies in a closed area
by marking flies with colored paint and taking a
sample to determine the rat.io of marked to un­
marked. In a later paper (1936) Jackson states
t.hat he discovered this method independently in
1930, but meanwhile becanle cognizant of Lin­
coln's work and hast,ens' t.o credit Lincoln with the
met.hod.

Jackson mentioned, also, that a represevtative
sample of the population as regards mark ratios
would be obtained if either the marking or the
subsequent sanlpling were carried out in a non­
selective fashion. This is of considerable prac­
tical importance. It is not necessary that both
be nonselective. If the marks are randomly, or
evenly, distributed in t.he population, anysanlple of
n members will yield a eonsistent estimate of the
mark ratio in the population. (The term "mark
ratio" or "tag ratio" w~ll be used in this paper to
mean the quotient of the number of marked mem­
bers in a group divided by the tot,al members in
the group.) Similarly, a representative sample of
the .population will yield a consistent estimate of
the mark ratio regardless of the distribution of
marked mem,bers in the population.

Sato (1938) estimated the stock of red salmon
in the western North Pacific. He stat.ed:

2. The stock (S) of red salmon may be estimat.ed by the
formula:

l':X=.S:Z,

where l' is t,he number of tagged fishes, X, the number of
recaptured fishes, and Z, the total catch of the fish.

His. estimate of 94.7X 106 individuals in 1936
was made from 1,358 marked fish and 177 re­
captures among a sample of 12,339X 103

• He
made no attempt to estimate the reliability of the
result. It may be seen from formula 7, however,
that the sampling error is actually quite large.

Green and Evans (1940) employed t.his method
for computing populations of snowshoe hares.
Hares were trapped and banded during a long
"precensus period" lasting all winter and up to
mid-April. The banded hares at liberty from
the:se operations were taken as the known number

. of marked members, and the ratio of marked to
unmarked was determined during a short "census
period" in April. The formula employed by

these authors is essent,ially formula 1, sinee they
take

Hares banded in precensus period
Other hares present in precensus period

New-banded hares trapped in census period • (8)
Other hares trapped in censlls period

and compute the number of· "other (unmarked)
hares present in precensus period," and add it to
the number of marked hares to get the t.ot.al
population. This inay be illustrated by the
simple example we have employed before, where
we have a popull1tiOli cont,aining 100 marked
members and draw a sample of 500 containing
50 marked members. Green and Evans would
conipute "other hares present in precensus period,"
as follows:

100 50
X =450

and add the 100 mark~d hares to get the population
estimate of 1,000.

These authors consider the effects of several
possible sources of error. They show that migra­
tion in and out of the area of study is unimportant.
The "evenness" of the sampling is also considered.
They state t.hat "It is essential that trapping
throughout the area be uniform during the census
retrap in the spring.... Uniformity need not
be so rigidly maintained during tl)e precensus
period." This, of course, is a special case of t,he
rule that either the sampling for tagging must be
uniform or the subsequent sampling for tag ratio
nlust be such as to yield a representative sample
of the whole population. .

. Green and Evans also consider the "error of
random sampling." Using their notation, we
find that they take:
1J=proportion of hares trapped in census period that were

not banded (trapped) in precensus period.
P = number of the hares trapped in census period that were

not trapped (banded) in precensus period.
N = total number of hares trapped in the census period.

P .
P="N

'They then t,akc (J" ~ for tohe st,andard deviation
of p and state that

(J"~=~PJ •..•.•.. (9)

where q=l-p. Taking P±2(J"~N, and employing
these ..values in place of the second ... quotient,:
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• P-Np·q
U p"= P-l N

=~.9Y...l= 0134?'
Up 500' .,

in their 'formula (8), they arrive at an estimate of
range of th~ error due t,o sampling. They conclude
t.hat-

If we use 2.,.. as our range on either side of the figure
obtained . . . we are almost certain to include t.he correct
figure for p, since twice t.he standard deviation on either
side of the mean includes 95 percent of a normal distribu­
tion curve.

. ,

. The principle involved here is that if either the marking
or the search for recaptured fish is made on only a part of a
homogeneous population, the Peterson estimate will still
apply to the whole population. If both marking and
search are made in only a fraction of the population, the
est.imate applies to whichever fraction is larger.

Cagle (1946) employed marked lizards to esti­
mate their- popula.tion on a section of Tinian
Island by the employment of the method forlllU­
lated in formula 1. He mn.rked 127 individuals by
clipping their toes and in a sample of 52 found.
12 marked, yielding an estimfl.t,ed populat.ion of
roughly 500 individuals. He did not consider the
problem of sampling error.

'which is not the same thing fiS dd.crmining the
error of the estimate of the population from the
single sample available.

Dice (1941) refers to the paper by Green and
Evans and considers a number of practical factors
to be taken into account in carrying out the
sampling.

Knut Dahl (1943, pp. 139-143), has applied the
method of marked members to enumeration of
trout in a lake. IJ;l a small lake on the west coast of
Norway, of 250,000 squnre meters, trout were
captur~d by bench seine and marked. During a
second fishing 8 to 14 days later he determined the
number of marked and unmarked fish captured.
From the number of marked fish liberated, divided
by the number of marked fish recaptured, he. com­
puted a "Gjenfangstkvotient" by which the total
fish tal;;en in the second fishing was multiplied to
oht,ain the iotal population. This is, of course,

the same as formula 1, where f is the "Gjenfangst.­

kvot.ient."
Ricker (1942) mellt,ions t,he simple case here con­

sidered, although he uses a met.hod of repeated
t.agging and sampling on t.he sta.tionary popula­
tions of pond fishes dealt. wit.h in his paper. This
method will be reviewed subsequently.

In a later paper, Ricker (1945a) employs for­
mula 1, which he calls "the Peterson met.hod,"
after the Danish investigator who is said to have
used it on plaice. Ricker's field procedure is
similal' to that of, Green and Evaris on hares in
that he used t.he number of fish marked during a
precensus period and the ma.rk ratio of a later
period. He also writes in regard to the sampling
cOlisideration we have discussed earlier in relation
to Jackson (1936) that:

.0000901
(l000-500) 0.9XO.l

. (1000-1) - 500

u p =,00949

and 20"pN= 13.42. The corresponding values of
463.4 and 436.6 may be employed in the second
quotient of formula 8 in place of 450 for P to
obtain est,imat,es of 927 and 873 for limits of t,he
estimate of "other hares present in precensus'
period." Corresponding values of total popuhttion
are 1,027 and 97:3.

Formula 9 gives the standard deviat,ion of p in
repeated sanlples of size N from a pOPtIlation' of
infinite size. 'Since in' the present case the popula­
tion is finite, and N is large with respect to it, the
fomlUla for the standa-rd deviation of p should be

Green and Evans' estimate also has, however,
the same objection that, Pearson raised to'Laplace's
solution, rather important in this inst,ance, that
t.his,treats the problem of a further sample from a
population' in which the value of p is known,

where P=the number in t.he population (Cramer
1946, p. 516; Kendell 1944, p. 203). Thus Green
and Evans' limits for p would tend to be too broad.
For the same simple example used above, this,
formula gives us

While this estimate of the reliability of the
population estimate is better than none and,
indeed, will give an idea of limits withi~l which
the population may be expected to fall, it suffers
from a lack of precision. The method of compu­
tation may be illustrated by the simple numerical
example we have employed before. Here P=450,
N=500, and p=0.90. Formula 9 then yields
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Given values of 11 and T from an experiment,
we can, then, by formula 13 oaIeulate for various
values of p, as ordinat,es, the limit,s \vithin which
p*, the tag ratio of the sample, as a~seissae, may
be expected to fall for a given value of the oon­
fidenco level E. The curves connecting t,ht%e
points will form the confidenee limits corresponding

int.ervals is be:rond the seope of this paper, and
reference is made t·o the original paper of Neyman
or to the discussion of Cramer (194(i, p. 507 et seq.)
or that of Kendall (1946, p. 62 et seq.).

The confidence limits of the estimate of the
tag ratio in the population may be obtained as
follows (Cramer 1946, p. SiS):

Suppose we have a population cOlisisting of II. finit.l'
number N of individuals. Np of which possess a cert.ain at­
tribute .4, while the remaining Nq = N - Np do not possess
A. It is now required to estimate t,he unknown pl'oportion
p ... Let us draw a random sample of n indiYiduals
without replace IIIeIlt, and obs",n"e the number v of illdi­
viduals in the sample possessing the at.tribute A. In
current. text~books on probabilit.y, it is shown that we have

E('!)=P D2(~)=N-~. pq
. 1~, n N-I n .

Furt,her the variable p*=~ is approximately,normally dis-

tributed, when nand N - n are large. Taking p* as an
estimate of p, we now assume as above that the error of ap­
proximatiOli in the normal distribution can be neglected.
The prob.ability t,hat p* lies between the limits p ±

lI. /~ -n 'e!l is then equal to E, where lI. has the same
'IN--ln .

significance as in the preceding example. (Note: where lI.
was stated to be the lOOE % value of a ilorlllal deviate, and
E is the confidence level.)

In Cramer's notation E ( ) denotes mat,he­
matical expeetation (or 'lllean value) and D2 ( )
denotes the variance.

N tlnd n have the sallle meaning as in our earlier

formulae, 1 to 12 j P is equal to T, and '£l is equal to
n

, t in those formulae.
For any given values of N, n, and T we can 00.1-

culate the limits within which p*=!.. may be ex­n

pected to fall for a given confidence level, E, by
the formula '

•. (13)~
N-n pq

p±X l\'T 1'-'
H - -n

'1'
P=N and q=l-p

where

(n+1) (1'+1)_1 ( )
(t+l) • • • • .. 12

is an estimate of N biased by an amount P (0)
(N-T-·n). If conditions are such that a sample
of n with no marked individuals is very unlikely,
t,he bias is negligible. We may say that formula 12
is ·an effectively unbiased estimate of N.

'Where the numbers are all large, formula 12
reduces immediately to formula 1 or formula: 6.

Unfortunately, an estiinate of the variance of
the estimate of N given in formula 12 has not yet
been obtained.

Chapman (1948) has consi.dered the problem of
determining the value or values of N which :r..nake
P (t), formula 10, a maximum. He found that the

maximum-likelihood estimate of Nis 'nt, or if that

. f . 1 l' . l' I b I nTIS ractlOna, t Ie mteger IDllne< late y e ow t'

whence

:) _ ,(N-n)!n!l'! (N -1')! .
1 (t)-!f!t!('J!,.-t)! (ow-t)! (N- T -n+t)! .... (10)

Confidence limits on the population estimate

The method of confidence intervals, due to
Neyman (1934), may be employed t,o determint·
the range of values within which we may expect N
to lie. .A discussion of the theory of lJonfidence

,SOME FURTHER CONSIDERATIONS

\vhere E( ) denotes mathematical expectation and
P (0) is t,he probability of getting no tags in the
sample.

This means that

An alternative derivation

Formulae 3 t,o 7 were reaehed b:'T Pearson by
.means of Bayes' theorem, whieh is objected to as
invalid by many mathematical statisticians lKen­
dall 1944, p. 176 et seq.). Dr. S. Lee Crump has
suggested (private conllnunieation) that an esti­
mate of N may be arrived at by other means, as
follows. Drawing samples of fixed size on from a
population N of which T are marked, the probabil­
it,y that, in a sample of n, t are marked is
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to various values of sample tag ratio p *=L Since. n
to every value of p there corresponds a value of N,
these curves ulso give the confidence limits of
our estimate of the size of the population made by
the formula . T

N = p* . . . • • • • • • • (14)

which is the same as formula 1, of c@urs~.

A numerical example may nlake this clear.
Suppose that, in a given experiment we have
plMed 1,000 tugged fish in the population and
plan to draw a sample of 2,000 fish for determining
the tag ratio. By formula 13 we can compute for
values of population tag ratio, p, the limits within
which p* will be expected to fall in, say, 95 percent
of the cases (E=0.95). In figure 1 we have~ ,
calculated and plotted these limits for part of the
range of p for this example. The ordinates on
this graph are values of p, and the abscissae are
values of p*. Going horizontally across the graph
for a given value of p we come to the vaiues of p*
within which samples of 2,000 from. a population
having a true tag ratio of p would be expecte~l to
faU in 95 percent of t,he cases. By the theory
developed by Neyman the loci of sl~ch points 'f~~
various values of p form the 95-percent confidence
limits for values of p*. For.a given value of p*
we go along the vertical·to the intersections with
t.hese loci to find the confidence' limit,s for thut
value of p*. Thus, suppose that we draw our
sanlple of 2,000 and find that it contains 100
tagged fish. Our estimate of the tag ratio in the
population is 0.05, and from figure 1 we find that
for this value of p* the 95-percent confidence
limits are 0.042 and 0.059. Since we know there
are 1,000 tagged fish in the population," our
estimate of the population by formula 14 is 20,000
with 95-percent confidence limits 16,950 and
24,800. On the right-hand edge of the gmph we
have plotted the values of N corresponding to
tag-ratio values of the same ordinates on the
left-hand edge, in order to exhibit graphically the
relation between the two. -

Such a chart as this may be computed for any
particular experiment. The entire range of values'
of p need not be included j it is sufficient in practice
to compute the values to include the region within
which p* is expected to fall. . '

For values of n which are small with respect to
. N-n

N, so that N-l approaches 1, formula 13 ap-

proaches. the form appropriat,Q for the binomial.
Clopper and Pearson (1934) have computed and
charted the .confidence limits of the binomial for a
large n:umber of values of n for 95 p~rcent and
99 percent confidence levels. Since the limits for
the binomial faU in every case outside the limits
given by formula 13, these charts may be used to
obtain upper and lower limits on the ~ample value
of 1)* even where n is not small in relation to N.
This involves, of course, a considerable loss of
efficiency when n is not small in relation to N, so
that the employment of formula 13 would seem to
be generully preferable in such cases.

Chapman (1948) has considered the Poisson
appro:\imation to the distribution of expect,ed
muubers of tag recoveries' where the tag ratio is
low, in addition to the normal, normal-binomial,
and norlllal-hypergeometric approximations, as
bases for confidence-interval estimates of N. He
has tabulated useful confidence limits for the
Poisson distribution, and discusses practical cri­
teria for judging which distribut~on to ehooso as a

basis of estimution for various values of n und L. n
As is shown by Cliapman's example on page.S!

of his paper, for experiments involving numbers of
tagged fish, T, and subsequent smnples, n, of the
magnitude of the example we have employed, and
whieh is of the apprmdmate magnit,ude of most
practical tagging experiments, the differences in
confidence limits resulting from the several dis­
tributions which might be employed are not v~ry
great. In pract,ice it would make little differenc'e
which we chose. He recommends which distribu­
tion to employ for various situations j for values of

n>I,OOO and.!>0.05 he recommends the ~ormal
. 11

hypergeonletric, which has been employed by me
in the exanlple above. '.

REPEATED SAMPLING OF A CONSTANT
POPULATION'

Where the popt~lation of an area remains con­
stant ove~ an appreciable period of time, it is
possible to arrive at an 'estimate based on repeated
sampling 'and marking.
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In or.der to estimate the population by t,his
method. a sampling,st,ation or group of st,ations is
established that will result in a randonl sample of
all parts of the population. .SaqJ.ples are drawn at
intervals and the fish are t,agged and replaced.
Records are kept, for each sample, of the number of
fish caught and the number of recaptures.
Schnabel (1938) provided a solution to the problem
of estimating the population from the resulting
datn.

We may let N be the total population, as before,
T t be the number of tagg~d fish in the lake when
the i1h sample is drawn, nt be the total number in
the ·i1h sample, consisting of tt tagged fish recap­
t,ured and"Ut untagged. Schnabel finds that where
It samples are drawn, the method of ma~imum

iikelihood gives as an estimate of N the positive
real root of the k lh order equations

± uiTt =±'It
;=1 N-Tt ;=1

... (15)

TABLE l,-Schnabel's me/hod of computing a·fish population
by repeated sampling and lIlark!:ng

[Data from Krumholz (llH4) table 1]

Num- Number Esti-
Dote b~r of of Sum of Num- Sum matedfish marked Product ber of of I'e-fl941)

l~xam- fish in products returns turns popula-
ined lake lion

----------------------
n, T, '11.Ti ~n.,7'i I, ~ti 2:.n,Ti/2:.I,

----.------------- ----
.Tuly 30 53 -------53- ---2~iii5 - ----2~iii5- ------2- ------2- -----i.-4t,831 55
Ang. 1 67 1fI6 7.102 10,017 3 5 2.003'

q 59 170 10.030 2C1,047 2 7 2,8M
4 85 225 19, 125 39,172 6 13 3,01~

5 94 29; 27,918 . 67,090 3 16 4.1\1.1
6 53 376 19.928 87,018 1 17 5.119, 115 426 48.990 136,008 5 22 6,18:!
8 59 520 30.680 166.688 4 26 6,411
9 53 573 30.371 197, 0S\l 4 30 6,560

11 53 609 32.277 229,33R 5 35 6,552
'12 68 604 41.074 270,410 q 37 7,3C1S
13 45 666 29.970 300,380 4 41 7.32f>
14 38 705 2f>,790 327. t7C1 -----~ -- 41. 7,980
15 45 742 33,390 3110,560 3 44 8,19:\
16 28 '. 742 20,776 381, 336 44 8.667
18 40 741 29,640 410.976 q 4f> 8,934
19 20 741 14,820 425,796 -. --~ --- 46 9.256
:!(l 30 741 22.230 448. 026 5 51 8,785
21 27 741 20.007 468.033 1 52 9,001
22 42 741 31, 122 499,155 I 53 9,418
23 20 741 14,820 513.975 ··._4_._ 53 9,698

which can be expanded in the form,

k Ut Tt ( T· T.2 ) k:E N' 1+N'+N'2+ ... =~ II' . (16)
1=1 . 1=1

Next Schnabel points out, t.hat if T 1= T for all i

N 1,:3'/1.1 (19
= ~t·········· . )-',

it may be seen that if T t is negligible compared to
N, the root of formula 15 is approximately

Th.is is th.e forlllUla which has been employed by
fisheries workers in practice. Its application will

. be clear from the example given in table 1, the data
for which are from a marking experiment by
Krumholz (1944).

By taking sufficient terms in formula 16 the root
may be approximated, as closely as desired.
Schnabel states that 3 terms of the series are
usually sufficient, and that the computations
necessary for higher approximations are often
prohibitive.

Schnabel also considers some spedal 'cases of
formula 16. By \\,'riting the equat,ion (15) in·the
form

and states t.hat "This formula is applicable to the
dat.a of experiments in which the number tagged
is held constant after a certain point. This method
has the disadvantage that the data taken before
T become constant are not utilized."

It may be readily seen that if we consider the
sum of the samples in t.his last case. as a single
laJ.·ge sample, formula 19 is identical with formula
1. Thus the simple case considered earlier may
be regarded as a special case of t,he method. of
the present section.

Schnabel's formula 18 has been employed by
Ricker (1942, 1945a) to estimate fish populations
of. lakes and ponds in Indiana. Ricker has as­
sWlled that, in situations where this formula is
applicable, the fiducial limits of t.he Poisson distri­
bution applied to :31/ would give some idea of the
variabilityascribable to random sampling (Ricker
1945b), but also states that "an estimate of error
obtained direct.ly from the data t.hemselves; for.
both t.he general and the special case, is to be
desired."

Underhill (1941) applied tl;lis method and
formula 18 to the comput.ation of a chub-sucker
population of a pond in New York, and Roach

. (18)k

~It
i=1
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Krumholz (1944) has made a practical check of
the aeeuracy of esthilation of a fish population by
repeated sroupling, marking by clipped fins, and
the application of Sehnabel's formula (18). He
computed the population of fish over 45 milli­
meters in length in the north basin of Twin Lake,
Mich., in this manner and then poisoned the area
with rotenone and counted the fish poulation
directly. He concluded:

TABL~ 2.-S('hlt1nache~ and Eschmeyer's method of C01ll­
putwg a fish populatton by repeated sampling and marking

(Data from table 2 of Schumacher and Eschmcycr (I9~31l

From an exchange of letters with Dr. Schumacher it
appears that the efficiency of this expression is at a maxi-

T.
mum when IV 1S equal to 0.5, whereas Schnabel's second, or

approximate formula becomes most efficient as (TIN) -0,
and the two formulae are of equal efficiency when
TIN=O.25. Consequently Schnabel's form will o;dinarily
be best., since the value o! TIN rises gradually from a ver~
small initial mag11itude, and, except on quite small borlies
of water, will not often exceed 0.25 even when the experi­
ment comes to an end. Of course Schnabel's long formula.
carried t.o several terms, can always be used if the best
possible estimate is desired; but. the labor of computat.ion
will rarely be warranted, considering the magnitude of the
sampling and probably systematic errors in such experi­
ments.

Rieker (l945b) has invest,igated the relative
efficiency of Schumacher's estimate (20) and
Sehnabel's formula (18). He states:

Numhcr Number Number

I
orm,\rked of markcd

fish in of fish in fish in. ~amplc I,'Date (laU) pond samilio T,~n, 2';.t, -
--------- ni

T, _n_,_L_!_'_---- ---------
Oct. 3______ 23 39 4 20.631 9~ O. ~102.ill
Oct. 6______ 57 ~9 4 159.201 228 .32f.i31
Oct.7 ______ 102 51 4 530. 60~ 4118 . 311i25
Oct.8 ______ 1~0 28 5 621.628 ;45 .89285;
Oct.9 ______ 1-~ 79 19 2. 3.37. 1;16 3.2fi8 4.56962",~

Oct. 10_____ 232 43 8 2.314.432 1. 851\ 1. 48837_
Oct. 11. ____ 267 49 7 3. ~93.161 1. 869 1. onnoo
Oct. 12_____ 300 22 2 2. 100. 5S~ 618 . 181818Oct. 13 _____ 329 38 11 4,113,158 3.619 3. 184211
Oct. 14 _____ 356 22 5 2.788. 102 1. 780 1. l:lf\,36~
Oct. 15 _____ 372 15 .\ 2.075.760 1.488 1.066667Oct. 16_____ 383 4 1 I 581\,756 3.-'13 .2500110
Oct. 17. ____ 383 25 7 3.667.225 2.681 1.0600041
Ont.18 _____ 383 98 341 I~. 375. 522 11. ~OO !1.183673
Oct. 19_____ 383 II 1~ 10.414.910 4..iOI\ 2.1128169

TotaL. ==~':-'l-======1' 49. 598. 007135.l2l
---
27.992$3

(1943) has done the same in estimating the white­
bass population of an Ohio lake.

Schumacher and Eschmcyer (1943) have de­
vised an estimate of N from repeated samplings
which is different from that of Schnabel. Thev
assume that the weight, or value. of each srouple
is proportional to the number of fish in the srouple.
Under this assumption, an estimate'of Nis arrived'
at by minimizing the sum of the squares of the
. . l ' TtWelg Ited dIscrepancies of the N from their esti-

mates!..i.... This leads t,o the formula
1J.,

where

I

which is applied by these aut,hors to the estimation
of fish populations of a pond in Tennessee.

These authors have also derived an expn,ssion
for {",he sampling error of N. They take as the
standard error of N the square root of

N3.<;2
-k-- . . . . . . . (31)
"L,Ttfl
1=1

k

~T/-n,
N=-,=1 __

k •••••• ,. (:30)
"L,T;t l
1=1

N=49,598,907 =141')
35,121 ,oJ

In th.e last formula I have corrected a typo­
graplncal error whieh appears in the original paper
(formula 3, page 234) and which Professor Schu­
macher has kindly pointed out iu a private
communication. .

In table 2 is reeapit.uJated a numerical exrouple
from Sehumacher and Eschmeyer (1943), pertain­
ing to the estimation of a population 9f bullheads
in Yellow Creek Pond: Tennessee. Substituting

. the appropriate sums from this table in formulae
[30] and [21], we obtain the following estimates
for N and its standard error (UN):

8~=~ (27 992?63- 35,121) =0 ??')~14 . .., 14]2 .OJOJ_'-'

The eStimate from netting operations was very close to
that obtained by poisoning in this first check on the fin­
clippinp; method for estimating fish populations. Further
studies of this t~'pe are needed to prove definit.elv the
accuracy of the method.... Other checks of this m~thod
will be made whcn conditions permit.
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populn.tion by whieh these errors may be reduced
when the tagging is done by means of numbered
tags, so that the relation between time of tagging
and t,ime of recow;r:y may be estimated. I am
indebted to Dr. S. Lee Crump of the Iowa State
College Statistical Laboratory for much assistance
with the mathematics involved. .

If our tagged fish have been m.arked by num­
bered tags, we know both t,he date of tagging and
date of recovery for each one 'recovered. This
m~kes it possible to tabulate the recoveries by

. time of tagging and time of recovery, using fiB a
time interval a convenient period of days. Our
notations for t,he elements involved in the discus­
sion of t,lus section. in 'addition to those introduced'
before, are as follows:

Let
Na=t,he total number of fish passing t,he .point

of ta.gging during the a 'h period of t.agging.
(a=l, 2, 3, ... a).

Ta=the number of these fish which are tagged
during the at/"tagging period.

nat=the number of fish out of the Na ~hat, are
d · I '/hsubsequently recovered urmg tIe '/' recovery

period.
Tai=the number of fish out of the Ta that die

and are thus available to be recovered during the
i,h recovery period.

mai=the number of tugged fish tagged during
the a,lI period of tagging an~l recovered during the
i,lI period of recovery (i=l, 2, 3, ... s).

m'a,=the number of untagged fish passing the
point of tagging during the a tll tagging period and
recovered during the i tll recovery period.

The followiilg summation conventions are em­
ployed:'

~~mal=m.
a i

m'i+m."i=(!;

~:::>n'at=1n'.t
a

Also let:

~m'~I=m'a'
i

Obviously,

ESTIMATION OF A CHANGING
, POPULATION

Some fishes, such as salmon spawning in a given
st.reOlll or lake. do not always form a single, homo­
geneous, completely mixed popul~tion.. There
may be a ,tendency for the fish whIch mIgrate to
the' spawning grounds earliest to complete their
spawning and die earliest; there results a positive
conolation between time of' migration past a
point below the spawning grounds and the tilll~ of
appearance on, and of death at. the spawmng
g~ounds. If, now, we are tagging fish below the
spawning grounds, or even on these grounds, and
lo.ter sampling for tag ratios, the "mixing" of t.he
fish between tagging and sampling is not complete,
and this .may need to be taken into considel'l1tion
in our esthnation of the population. Similar
situations may occur among other migratory
animals.

When there exists such a correlation between
time of tagging and time of subsequent sampling,
the samples drawn during any particular part, of
the season do not represent all parts of the popula-

'tion equally; the sample is not a random sample of
the whole population.' The possible effects of
this on om estimates by formula 1 are easily seen.
If, as has already been pointed out, all parts of the
population have the same tag ratio, if the tags, are
"evenlv distributed," it will make no difference
wheth~r the subsequent sahlples represent the
various parts of tho population equally or not..
Likewise, if the population is "evenly" sanwled
aft,er tagging, that is, if the probability of ~ given
fish being included in the sf4nple is not a function
of the time of sampling (and, t.herefore, not n
function of the time of tagging)~ any uneven dis­
tribution of tags by time of migration will have
no effect.. If, on the other hand, 'the probability
of. a fish being tagged (the tag ratio) varies with
the time of tagging, and the probability of being
included in the subsequeJlt. sample varies with the
time of sampling, and there also exists a correla­
tion between time of tagging and time ofsampling.
it is obvious that the tag ratio in the total sample
for the season will differ from that of the p'opula­
tion to some extent, depending on the magnit:udes
of these factors.

Presented here is a met,hod of estimating the
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(23)

pi*=·m.1
0, (30)

(28)

(27)

problem of est.imating the P(ifa)

1na .ma f 'mai

P*(a/i)= m .. m a. = m .. =Jnai. (29)
"\'ma·m.a; m'l m'i

. L-im.. 1n a . m..
a

This gives us for an esthnate of n a .

* """''''P*( / . ~(' m'ain ai= 4J'-'i (1 1)= 2.,..J - f --
I I m"i

.. ~nal

P(OI)=-'-­
n

and we may esth~late pea) by

p*(OI)=ma..
m ..

To estinlate P(i/a) we may use

P*(i/a)=mai
•

·ma .

Then our estimate of Pea/i) becomes

we have the
and the Pea).
Now,

The estimate of nal is, then, given by
* mal

n al= q*aP*i .

which is equivalent to

n*ai=mai T a 01
••• • •• (24)

m a .1n·t
The estimate of t,he t,otal population is obtained

by sumnling all these n*al. thus

N*=~~mal TaOt • • • •• (25)
a i ·ma.m.t

A somewhat more rigorous derivation. based on
Bayes' theorem, has been suggested by Dr.
Crump:

The problem is to estimate the na. and the 'la.
if we can do this we can take as our estimate of N,

. *
N *....:...""~
-~ *a 'la

Let PUla) be the probability tha.t a fish t,agged
during the a th period dies and is recovered during
the i th recovery period. Now we have Of fish
taken during the i th recovery period to be allo­
cated over the tla" tagging periods, and henee
we want the probabilit.y that a fish taken during
the i 'h recovery period is one of those which passed
the tagging point during the a lh tagging period.
Donot,e by P(OI/i) t.he desired prol~ability, and by
Pea) the true proportion of the n fish recovered
which passed the t.agging point during the 011"

tagging period. Then by Bayes' theorem

P( /
') P(i/a)P(a) (.~.:.)

a t ~PU/OI)P(a) . . . . _u

a

Total
fish

recov..
ered3 ... a

P~riod of t"gging ral Total
-,-·---;-----1 t"K~~d

recov­
prod

Tot".! fish t:\gg~d__ T, I T, , T, ... T. I

S:;~~l:~~~~~:;,~~~~~: '.,;,: '..;,: ~'1n:' ~I~
cOvl~rod 7Ih. m2. 1713 ... m. m •.
• (=1) ,

;---

Of course, ~Ta=T and ~Ci=n.
a I

Now, the number of fish passing the tn.ggillg
point during a which die during period i might be
estimated by

* 1na l (~.~).n al=p-' . . . . . .. --
al

(I shall denote "estimate of" by the asterisk
herein) where Pal is the probability of a fish being
tagged during a and recovered during i. This
probability is unknown, and our best available
estimate of it seems to -be the joint probability
p I'la, where these terms are as defined above.
This amounts to taking as the probability of
recovery the average probability of recovery of
all the fish passing t,he t,agging point dming a, .
and as the probability of being tagged the average
probability of being tagged of all the fish dying
during period i.

If the s~unplesdrawn for tagging and the samples
later drawn for tag ratios axe representative of the
paxts of the populat.ion from which t.hey are
drawn, P·i and qa may be estimated from the-data
as follows:

I'criod of ro:,rovery (i):
L ._~ ._ .... __ mil m21 71131 ... m.1 m.1 C.
2 . "mu 11121 m3~ ••• m.2 m.2 C'3
3 . l1h3 . m23 1nn .•. m-a 711.3 Oa

N,=the number of fish dying on the sp~wning

grounds during the ·i th recovery period.

:L>~al
i'lOl=-­N a

~Tal

P · a
1.=~

The dnt.a available from a given experiment can
be laid out in a t.ablc as follows:
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TABLE 3.-Data from a tagging experiment Ot~ migrating adldt 80ckeye 8ai-mon

Week of tagging (a) Total Total1----.------;1----,-------.---.---.----.,.--- tagged flsb IIsb re- a,/m·;
__________________1__2__3__4__5__6__._7_1_8__

I
_I'C_c_ov_e_re_d_

I
__co_v_ero_d_

I
, _

Weck of recovery (;): m·j a,
L-_-_- -_~~::::::::::::::::::::::::::::::::::::::: __ .~____ ~ 1~ ---6---- -- .. ---- ------.- -------- -------- 1~ 1~~ 6.33
3 • ••• 2 7 33 29 --ii-~-- :::::::: :::::::: :::::::: 82 800 ~:~~
4 • •__ • • __ ••• .•• 24 79 67 14 ._____ 184 ~~~ 15.48

!~s~j~,~,~~·~~~~~~~~~~~~~~~~~ ~~.:~~:H~~:>.J::: J J J 1~~rl:~~F:I- ] '~~__J~
Ta/ma._. __ • •• : . __ •• _ 5.00 5.36 5.39 3.86 4.22' 5.58 9.83 5.00 _.:::::::::: :::::::::::: ::::::::::

~Ci=10,472.
~Tu-2.351.

------1----------------

1---,-----,----.---,---.--.,..--,--1 Total
Week of tagging (a)

TABU: 4.-Comp1Itaiion of population estimate. by formulae
24- and 25 from the data of table :'1

7 a62 3

Weck of rcco\'cry (i):L________________ 32 34 34 • ._____ lIMI
2 • ._. 112 412 134 658
3_. • 98.3661.7361.093 453_. ._. 3,74H
4_. ._. •• 2,002 4.720 4,377 1,209 •. _. 12,308
5 .• • 589 4.388 7.103 3.049 15.129
6 • •• 386 829 604 1,198 • ._ 3,01;
; ._. . .____ 321 2.807 2.320 409 208 6,U65
S .___ 193 967 1.057 l,ll1S 1.758_. __ 5,173
9_ •• • .____ 544 595 525 1.664

----------------
TotaL 130 512 5,352

1
12,99616.996 9,499 2.167 20847,860

From formula 25 (or 32) it may be seen that
where the tagging or the sampling is uniform, this
estimate reverts to t,he simple case first discussed.
For, if the probability of being tagged is constant

for all i, the expected value of ..!l..!...=~, a constant.
m'1 m ..

Then,

which is identical with formula 1 since Tn .. =sf in
formula 1.

Likewise, if the probabiliity of being recovered is

constant, the expected value of Ta is..1:.,aconstant.
mol m..

Then,

N*= "'''' . 0; ~= Til (34)~~mOI ••••
aim.; m .. m ..

The tagging experiment illustrated in table 3 is
a practical situation of this sort. Although t~e

probability of a fish peing recovered, estimated'
from Vdm'1' changed very much during the course

N * ~'" To n Tn
=~~tncri - -=-- ... (33)

a .j mo· m·· ·m ..

we have, then,

N*= "'22~01 ma1 T a
• (32)

a I tn.; mao

which is the same result as obtai.ned in formula 25.
Application of this method of population estima­

t.ion may be illustrated by the data from a 'tagging
experiment conducted by me on 8: migrating popu­
lation of adult sockeye salmon in British Columbia.
1\. total of 2,351 fish were' tagged in a certain river,
on t.he way to their spawning grounds, over an
8-week period. Later, tag-ratio samples were
drawn regularly over It 9-week period as· the fish
spawned and died on the spawning grounds
farther upstream: 10,472 fish, of which 520 had
been tagged, wore recovered in these samples. In
ta.ble 3 are tabulated, in the same form as the
{,able on page 200, tag recoveries by week of t.agging
and week of recovery, with data on total numbers
tagged and recovered for each week. From th,ese
data are computed values of Ta/ma. and Oi/m.;
tabulat.ed along the m.argins. From these com­
puted values and the tag-recovery data tabulat.ed
in the body of the table has been comput.ed the
estimate of the population, as shown in table 4,
aecording to formulae 24 and 25 (or 32). The
values ill the body of this t.able are values of

* To 0/ l' I h' fNn o;='mo ; -- -- W 11C 1 sum to t. e estunate 0 ,
mao ·m.;

47,860 fish.

Taking our esti.mate of go. as before (23), and as
our estimate of N .

*N* = "'22 n *01. • • • •• " (31)
a q a
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of the season, the probability of being tagged,
judged from Ta/ma· was fairly even over most of
the season. In consequence, the estimate from
the simple formula (1)

N =(l0,472) (2,3~1)=4~ 345
520 ',.

is practically identical with the estimate from
formula 25 (or 32).

T:II 1000
T1:11 2000

IIJ
oJ

20 c(

()

en

10

e

9

7

z

15 ~

25
30

-II .(1)

o
12 ~

40

60
80
100
200

CD

.15.14.13.12.11.06 .07 .08 .09 .10

OF p* .. :

.02 .03 .04 .05

SCALE

01

I-

/
/

/

/

"L t-

/

/
V /

V ./
V /

V /
I V /

V /
V /

V 1/ r-

V 1/
V V

V V l-

i/ V
/ V

/ V
/ V

/ / -.

/
/

/ ~

./
V ./

V /
/ 1/ -

/ V -'
/ ,/

IV.00
.00

.17

0. .07

.09

.01

.10

'.02

~ I I

.12

.15

II

.16

.13

.14

"­
0.06

W.05
.J
c(
(,).04
U)

.03

...~.oe

Confidence limits on sample tag ratios and on estimated population numbers, at a confidence level of 95 percent, for
experiments im'olving 1,000 tagged individuals and samples of 2,000.
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