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ESTIMATION OF SIZE OF ANIMAL POPULATIONS
BY MARKING EXPERIMENTS

By MILNER B. SCHAEFER, Fishery Research Biologist

Determination of population numbers is basic
to studies of changes in populations of animals
and of the causes of the changes, 'such as the
effects of fishing on a population of fishes. For
many animals this cannot be accomplished by
direct enumeration, and recourse must be had to
indirect methods. One technique which has
been employed in the study of fishes, and other
organisms as well, and which is still in course of
development, is the use of marked members to
estimate population numbers.

SIMPLE CASE
THE PROBLEM

The simplest case with which we have to deal,
and which can be applied to many fish populations,
is where we have a population containing N
members (unknown) which is known to contain T
marked members and U=N—T unmarked, and
where we have drawn a single representative
sample of n members containing ¢ marked and
u=n~—t unmarked. The term “representative’’ is
used here to mean that the character estimated
from the sample will- have a mean value iir repeated
samples equal to the population value. This cor-
responds with the commonly accepted sense of the
term, and also with its usage by Neyman (1934).
A simple random sample of the population is repre-
sentative, but so also may be various others.

The problem of estimating N consists in making -

such an estimate given T and the sample values

n, t, and 4. The usual basis of procedure is to
accept ]%7=% intuitively and to estir_na.té N by the
equation

N

If, for example, we know there are 100 marked
members in the population, and a sample of 500

955620°—51

contains 50 marked members, we would estimate
the population by this equation to be

500X 100 .
=2 =1,000

This method has been employed by a consider-
able number of investigators during the last two
decades to estimate the populations of various or-
ganisros, The method is much older than this,
however, having been eniployed as early as 1783
by the famous French mathematician and scientist
Laplace in estimating the human population of
France. Laplace gave considerable attention to
the theoretical problem of the error involved in
employing this method. This problem attracted -
the attention of another famous statistician,
Karl Pearson, who published an analysis of it,in
1928. Later workers in various branches of
zoology seem to have overlooked Pearson’s work
and also that of their zoological contemporarics.
They have apparently often “rediscovered” the
same method, but have in the main given little or
no attention to the problem of the accuracy of the
resulting estimate.

Laplace determined from s sample the ratio of
births in-a year to the population producing thosc
births, and then ascertained the number of births
in a -year in each urban and rural district of
France; by multiplying the number of births by -

.the ratio of population to births determined from

the sample, he arrived at an estimate of the total

" population. Laplace was led to consider also the

error inherent in his estimate. This problem, as
restated by Pearson (1928}, but using my notation,
is as follows: “A population of unknown size N is
known to contain T affected or marked members.
It is desired to ascertain—on the hypothesis of
inverse probabilities—a measure of the error

introduced by estimating N to be n %, where £ is
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the number of marked individuals in a sample of
size n.”” Laplace treated this problem as an urn
problem, with an infinite number of black and
white balls representing marked and unmarked
members. On the basis of an extension of Bayes’
theorem, he predicted from a first sample of ¢
and n observed what a second sample with known
T but unknown N might produce. He found
that the mean value of N would be equal to
Tn

-+ if T, n, and ¢ are all large. He also took the

distribution of N to be normal about 1;—"’ as mean

with standard deviation estimated by

o Tu(T+1) (t+u)
a'N_-—-————taj————'

where the numbers are all large.

For the preceding example, where 7'=100,
n=>500, and £=>50, Laplace’s solution would give
an estimate of standard deviation

., _(100><450><150><500 1
y— —
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Pearson reexamined this problem in his 1928
paper because he felt Laplace’s urn statement did
not fit the actual problem since “We are not
taking a second sample from an infinite population.
We have only one sample and we want to learn
something about the population from which it
has been sampled, which is finite in extent,
although its extent is unknown. We do know,
however, that it contains T white balls; i. e.,
births in all France.” :

Assuming the sample 7 to be a random sample
of the finite population N, and on the basis of
inverse probabilities (Bayes’ theorem), Pearson
finds that the modal value of the distribution of
the possible values of N is

N4 8T=0_oT

the mean value is

o @+ 1) T—t+1).
N—’LL+T+——*({Tz5-— DECRE (4:)

and the variance is

: @EDT—tH D @—=D)T—1) o
= t—2)° ¢—3) -

. hies and Taylor (1933).

where £, u, and T are all large, Laplace’s case,

and

o= TUT0kY) o

This estimate of ¢»?1s different from and smaller
than that of Laplace, the disagreement being

attributed by Pearson to Laplace’s taking his

sampled population as if it were a second sample
independent of that already taken.

For the example employed before, with 7=100,
n=>500, t=>50, formula 7 would give

=905

100X 450X 50X 500\3
oN= 508

Pearson’s paper seems to have been gencrally
overlooked by zoologists dealing with ‘similar
problems.

* SOME APPLICATIONS IN THE LITERATURE

Formula 1 has been applied to the estimation of
diverse animal populations. One of the best
known of these applications is the so-called Lincoln
index of the duck population of North America de-
veloped by Lincoln (1930), and mentioned in the
textbook of Leopold (1935), the monograph of
Kendeigh (1944), the manual of Wright (1939),
and elsewhere. Lincoln used the ducks banded at
stations in North America as his marked members,
and the kill by hunters as his sample of the popula-
tion. The inaccuracies of kill records and the in-
complete return of bands were recognized as
sources of errors. No attempt was made to esti-
mate the statistical error.

An application of this method was made by Vor-
These workers computed
the number of jack rabbits on fenced cattle ranges
of Arizona by taking the ratio of jack rabbits seen
to the number of cattle seen in a strip of width
equal to the apparent flushing distance of the
jack rabbits, and comparing this ratio with the
known number of cattle on the range. In this
case, the cattle would represent the ‘“‘marked’”’
members of the population of rabbits plus cattle.
It seems rather doubtful whether the ratio in the
sample would be a fair estimate of the ratio in

‘the population because of the obviously different
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visibility of cows and rabbits, even in a narrow

strip.

Jackson (1933) developed a method of comput-
ing the population of tsetse flies in a closed area
by marking flies with colored paint and taking a
sample to determine the ratio of marked to un-
marked. In a later paper (1936) Jackson states
that he discovered this method independently in
1930, but meanwhile became cognizant of Lin-
coln’s work and hastens to credit Lincoln with the
method.

Jackson mentioned, also, that a representative
sample of the population as regards mark ratios
would be obtained if cither the marking or the
subsequent sampling were carried out in a non-
selective fashion. This is of considerable prac-
tical importance. It is not necessary that both
be nonselective. If the marks are randomly, or
evenly, distributed in the population, any sample of
7 members will yield a consistent estimate of the
mark ratio in the population. (The term “mark
ratio” or “tag ratio” will be used in this paper to
mean the quotient of the number of marked mem-
bers in a group divided by the total members in
the group.) Similarly, a representative sample of
the population will yicld a consistent estimmate of
the mark ratio regardless of the distribution of
marked members in the population.

Sato (1938) estimated the stock of red salmon
in the western North Pacific. He stated:

2. The stock (S) of red salmon may be estimated by the
formula:

Y:X=S8:2,
where Y is the number of tagged fishes, X, the number of
recaptured fishes, and Z, the total catch of the fish.

His_estimate of 94.7X10® individuals in 1936
was made from 1,358 marked fish and 177 re-
captures among a sample of 12,339X10%. He
made no attempt to estimate the reliability of the
result. It may be seen from formula 7, however,
that the sampling error is actually quite large.

Green and Evans (1940) employed this method
for computing populations of snowshoe hares.
Hares were trapped and banded during a long
“precensus period” lasting all winter and up to
mid-April. The banded hares at liberty from
these operations were taken as the known number
" of marked members, and the ratio of marked to
unmarked was determined during a short “census
period” in April. The formula employed by

these authors is essentially formula 1, since they
take

Hares banded in precensus period
Other hares present in precensus period

New-banded hares trapped in census period )
Other hares trapped in census period )

and compute the number of ‘“‘other (unmarked)
hares present in precensus period,” and add it to
the number of marked hares to get the total
population. This inay be illustrated by the
simple example we have employed before, wherc
we have a population containing 100 marked
members and draw a sample of 500 containing
50 marked members. Green and Evans would
conipute “‘other hares present in precensus period,”’
as follows:

100 50

X =150 =900

and add the 100 marked hares to get the popula.tlon

estmla,t.e of 1,000.

These authors consider the cffects of severa.l
possible sources of error. They show that migra-
tion in and out of the arca of study is unimportant.
The *“evenness’” of the sampling is also considered.
They state that “It is essential that trapping
throughout the area be uniform during the census
retrap in the spring. . . . Uniformity need not
be so rigidly maintained during the precensus
period.” This, of course, is a special case of the
rule that either the sampling for tagging must be
uniform or the subsequent sampling for tag ratio
must be such as to yield a representative sample
of the whole population.

-Green and Evans also consider the “error of
random sampling.” Using their notation, we -
find that they take:
p=nproportion of hares trapped in census period that were

not banded (trapped) in precensus period.
P =number of the hares trapped in census period that were
not trapped (banded) in precensus period.

N=total number of hares trapped in the census period.
P ;

p= N
They then take ¢, for the standard dev1at.10n

of p and state that
¢p= % ........ )

where ¢g=1—p. Taking P+2¢,N, and employving
these values in place of the second. quotient:
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in their formula (8), they arrive at an estimate of
range of the error due to sampling. They conclude
that— :

If we use 2¢, as our range on either side of the figure
Obtained . . . we are almost certain to include the correct
figure for p, since twice the standard deviation on either
side of the mean includes 95 percent of a normal distribu-
tion curve.

While this estimate of the reliability of the
population estimate is better than none and,
indeed, will give an idea of limits within which
the population may be expected to fall, it suffers
from a lack of precision. The method of compu-
tation may be illustrated by the simple numerical
example we have employed before. Here P=450,
N=500, and p=0.90. Formula 9 then yields

oY

=== ‘).
£ —-01342

Op

and 20¢,N=13.42. The corresponding values of
463.4 and 436.6 may be employed in the second
quotient of formula 8 in place of 450 for P to
obtain estimates of 927 and 873 for limits of the

estimate of ‘“other hares present in precensus

period.” Corresponding values of total population
are 1,027 and 973.

Formula 9 gives the standard deviation of p in
repeated samples of size N from a population of
infinite size. "Since in' the present case the popula-
tion is finite, and N is large with respect to it, the
formula for the standard deviation of p should be

» P—Np-q

P=P_1 N

where P=the number in the population (Cramer
1946, p. 516; Kendell 1944, p. 203). Thus Green
and Evans’ limits for p would tend to be too broad.

For the same simple example used above, this.

formula gives us

. (1000—500) 0.9X0.1
=7(1000—1) ~ 500

gp

=.0000901

c,=.00949 '

Green and Evans’ estimate also has, however, .

the same objection that Pearson raised to Laplace’s
solution, rather important in this instance, that
this treats the problem of a further sample from a
population in which the value of p is known,
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which is not the same thing as determining the
error of the estimate of the population from the
single sample available.

Dice (1941) refers to the paper by Green and
Evans and considers a number of practical factors
to be taken into account in carrying out the
sampling.

Knut Dahl (1943, pp. 139-143), has applied the
method of marked members to enumeration of
trout in a lake. In asmall lake on the west coast of

. Norway, of 250,000 square meters, trout were

captured by beach seine and marked. During a
second fishing 8 to 14 days later he determined the
number of marked and unmarked fish captured.
From the number of marked fish liberated, divided
by the number of marked fish recaptured, he com-
puted a “Gjenfangstkvotient’”” by which the total
fish taken in the second fishing was multiplied to
obtain the total population. This is, of course,

the same as formula 1, where ?—1 is the “Gjenfangst-

kvotient.” .

Ricker (1942) mentions the simple case here con-
sidered, although he uses a method of repeated
tagging and sampling on the stationary popula-
tions of pond fishes dealt with in his paper. This
method will be reviewed subsequently.

In a later paper, Ricker (1945a) employvs for-
mula 1, which he calls ‘“the Peterson method,”
after the Danish investigator who is said to have
used it on plaice. Ricker’s field procedure is
similar to that of Green and Evans on hares in
that he used the number of fish marked during a
precensus period and the mark ratio of a later
period. He also writes in regard to the sampling
consideration we have discussed earlier in relation
to Jackson (1936) that:

" The principle involved here is that if either the marking
or the search for recaptured fish is made on only a part of a
homogeneous population, the Peterson estimate will still
apply to the whole population. If hoth marking and

search are made in only a fraction of the population, the
estimate applies to whichever fraction is larger.

Cagle (1946) employved marked lizards to esti-
mate their population on a section of Tinian
Island by the employment of the method formu-
lated in formula 1. He marked 127 individuals by
clipping their toes and in a sample of 52 found
12 marked, yielding an estimated population of
roughly 500 individuals. He did not consider the
problem of sampling error.
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.SOME FURTHER CONSIDERATIONS
An alternative derivation

Formulac 3 to 7 were reached by Pearson by
‘means of Bayes’ theorem, which is objected to as
invalid by many mathematical statisticians (Ken-
dall 1944, p. 176 et seq.). Dr. S. Lee Crump has
suggested (private communication) that an esti-
mate of NV may be arrived at by other means, as
follows. Drawing samples of fixed size # from a
population N of which T are marked, the probabil-
ity that, in a sample of n, f are marked is

(N —n)!nI TV N —-T)!

P(t')=.N BT —B1 = N—T—ntot 10
whence' !
E{@%{;"‘D}=N+1—P(O)(N—T——n) ...(11)

where E ( ) denotes mathematical expectation and
P (0) is the probability of getting no tags in the
sample.

This means that

(n+1) @41

) 1...... (012

is an estimate of N biased by an amount P (0)
(N—T—n). If conditions are such that a sample
of n with no marked individuals is very unlikely,
the bias is negligible. 'We may say that formuls 12
is an effectively unbiased estimate of N.

Where the numbers are all large, formula 12
reduces immediately to formula 1 or formula’ 6.

Unfortunately, an estimate of the variance of
the estimate of IV given in formula 12 has not yet
been obtained.

Chapman (1948) has considered the problem of
determining the value or values of N which make
P (), formula 10, 2 maximum. He found that the

maximum-likelihood estimate of Nis #-, or if that

is fractional, the integer immediately below y—;l—’

Confidence limits on the population estimate

The method of confidence intervals, due to
Neyman (1934), may be employed to determine
the range of values within which we may expect N
to lic. A discussion of the theory of confidence
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intervals is beyond the scope of this paper, and
reference is made to the original paper of Neyman
or to the discussion of Crarer (1946, p. 507 et seq.)
or that of Kendall (1946, p. 62 et seq.).

The confidence limits of the estimate of the
tag ratio in the population may be obtained as
follows (Cramer 1946, p. 515):

Suppose we have a population consisting of a finite
number N of individuals, Np of which possess a certain at-
tribute 4, while the remaining Ng=N— Np do not possess
A. It is now required to estimate the unknown proportion
P ... Let us draw a random sample of n individuals
without replacement, and observe the number v of indi-
viduals in the sample possessing the attribute A. In
current text-books on probability, it is shown that we have

AW () =N=n Py
E(n)'—p. b (n

"N—=1 =
Further the variable p*=%’ is approximately normally dis-

tributed, when n and N—n are large. Taking p* as an
estimate of p, we now assume as above that the error of ap-
proximation in the normal distribution can be neglected.
The probability that p* lies between the limits p+

)\‘/11:” "; P?is then equal to ¢, where A has the same
- n

significance as in the preceding example. (Note: where A
was stated to be the 100e¢ % value of a hormal deviate, and
€ is the confidence level.)

In Cramer’s notation £ ( ) denotes mathe-
matical expectation (or mean value) and D? ( )
denotes the variance.

N and n have the same meaning as in our earlier

. . T .
formulae, 1 to 12; p is equal to o’ and ¢ is equal to

"t in those formulae.

For any given values of N, n, and T we can cal-
culate the limits within which p*=% may be ex-

pected to fall for a given confidence level, ¢, by
the formula '

N—n p
PEMI NI l—nq- e .. (13)
where .

p=ZIT7 and g=1—p

Given values of # and T from an experiment,
we can, then, by formula 13 calculate for various

values of p, as ordinates, the limits within which
p*, the tag ratio of the sample, as abscissae, may
be expected to fall for a given value of the con-
fidence level e. The curves connecting these
points will form the confidence limits corresponding
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to various values of sample tag ratio p*=£ Since

to every value of p there corresponds a value of N,
these curves also give the confidence limits of
our estimate of the size of the population made by
the formula

which is the same as formula 1, of ceurse.

A numerical example may make this clear.
Suppose that in a given experiment we have
placed 1,000 tagged fish in the population and
plan to draw a sample of 2,000 fish for determining
the tag ratio. By formula 13 we can compute for
values of population tag ratio, p, the limits within
which p* will be expected to fall in, say, 95 percent
of the cases (e=0.95). In figure 1, we have
calculated and plotted these limits for part of the
range of p for this example. The ordinates on
this graph are values of p, and the abscissac are
values of p*. Going horizontally across the graph
for a given value of  we come to the values of p*
within which samples of 2,000 from a population
having a true tag ratio of » would be expected to
fall in 95 percent of the cases. By the theory
developed by Neyman the loci of such points for
various values of p formx the 95-percent confidence
limits for values of p*. For a given value of p*
we go along the vertical to the intersections with
these loci to find the confidence limits for that
value of p*. Thus, suppose that we draw our
sample of 2,000 and find that it contains 100
tagged fish. Our estimate of the tag ratio in the
population is 0.05, and from figure 1 we find that
for this value of p* the 95-percent confidence
limits are 0.042 and 0.059. Since we know there
are 1,000 tagged fish in the population, our
estimate of the population by formula 14 is 20,000
with 95-percent confidence limits 16,950 and
24,800. On the right-hand edge of the graph we
have plotted the values of N corresponding to
tag-ratio values of the same ordinates on the
left-hand edge, in order to exhibit graphically the
relation between the two.”

Such a chart as this may be computed for any
particular experiment.

to compute the values to include the region within
which p* is expected to fall. ' '

The entire range of values -
of p need not be included; it is sufficient in practice
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For values of » which are small with respect to

N, so that ]X,_";’ approaches 1, formula 13 ap-

proaches the form appropriate for the binomial.
Clopper and Pearson (1934) have computed and
charted the confidence limits of the binomial for a
large number of values of n for 95 percent and
99 percent confidence levels. Since the limits for
the binomial fall in every case outside the limits
given by formula 13, these charts may be used to
obtain upper and lower limits on the sample value
of p* even where 7 is not small in relation to N.
This involves, of course, a considerable loss of
efficiency when 7 is not small in relation to N, so
that the employment of formula 13 would seem to
be generally preferable in such cases. ' _
Chapman (1948) has considered the Poisson
approximation to the distribution of expected
numbers of tag recoveries where the tag ratio is
low, in addition to the normal, normal-binomial,
and normal-hypergeometric approximations, as
bases for confidence-interval estimates of N. He
has tabulated useful confidence limits for the
Poisson distribution, and discusses practical cri-
teria for judging which distribution to choose as a

. . . . t
basis of estimation for various values of 7 and o

As is shown by Chapman’s example on page.81
of his paper, for experiments involving numbers of
tagged fish, T, and subsequent samples, 7, of the
magnitude of the example we have employed, and
which is of the approximate magnitude of most
practical tagging experiments, the differences in
confidence limits resulting from the several dis-
tributions which might be employed are not very
great. In practice it would make little difference
which we chose. He recommends which distribu-
tion to employ for various situations ; for values of

7>1,000 and q—i>0.05 he recommends the normal

hypergeometric, which has been employed by me
in the example above. '

REPEATED SAMPLING OF A CONSTANT
: POPULATION

Where the population of an area remains con-
stant over an appreciable period of time, it is
possible to arrive at an estimate based on repeated

sampling and marking.
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In order to estimate the population by this
method, a sampling station or group of stations is
established that will result in a random sample of
all parts of the population. -Samples are drawn at
intervals and the fish are tagged and replaced.
Records are kept, for each sample, of the number of
fish caught and the number of recaptures.
Schnabel (1938) provided a solution to the problem
of estimating the population from the resulting
data.

We may let N be the total population, as befora,
T, be the number of tagged fish in the lake when
the ' sample is drawn, n; be the total number in
the i'* sample, consisting of #; tagged fish recap-
tured and u;untagged. Schnabel finds that where
I samples are drawn, the method of maximum
likelihood gives as an estimate of N the positive
real root of the k** order equations

k T E .
éﬁir_}vﬁ%}'t; ....... (15)

which can be expanded in the form

“’Tf <1+£+ZTVQ+ Z}fi .. (16)
By taking sufficient terms in formula 16 the root

may be approximated. as closely as desired.

Schnabel states that 3 terms of the series are

usually sufficient, and that the computations

necessary for higher approximations are often

prohibitive.

" Schnabel also considers some special cases of

formula 16. By writing the equation (15) in.the

form

k —

> %ﬁv —0....... (17)

=1

it may be seen that if T, is negligible compared to
N, the root of formula 15 is approximately

M-
el
z

i=1

This is the formula which has been employed by

fisheries workers in practice. Tts application will
“be clear from the example given in table 1, the data

for which are from a marking experiment by

Krumholz (1944).

TABLE 1.—Schnabel’s method of computing a fish population
by repeated sampling and marking

[Data from Krumholz (1944) table I]

lt\‘l umi Numfber N 8 Esti-
Date or O o Sum of e um mated
g fish | marked | Product ber of | of re- ;
(941 | wam- | fishin produets \rovims | turns p(');pula-
ined lake . on
n; T; n;Ts =T £ =t =n:T;/2H:
July 30 b J ORI FURRRIR PSRRI SO SR N
31 55 53 2,915 2,915 2 2 1,458
Ang 1 67 we | 7.102| 10,017 3 5 2,003
2 59 170 | 10,030 20, 047 2 7 2, 8684
4 85 225 19,125 § 39,172 ] 13 3,013
5 o4 27 | 27,918 #7, 080 3 16 4,193
6 53 376 | 19,928 87,018 1 17 5, 119
7 115 426 | 48,990 ¢ 136, 008 ] 22 6, 182
8 59 520 , 680 | 166, 688 4 26 6, 411
@ 53 573 | 30,371 197, 4 30 6, 564
11 53 G609 | 32,277 | 229,338 5 35 8, 52
12 068 604 | 41,074 [ 270,410 2 37 7,308
13 45 666 [ 20,970 [ 300,380 4 41 7.326
14 33 705 | 26,790 | 327,170 |___._.__ L1l 7, 980
15 45 742 | 33,390 { 380, 560 3 44 & 195
16 23 742 20,776 | 381,336 |.._____. 44 8, 667
18 40 ™ 29, 540 410, 97/ 2 46 §, 934
19 20 741 14,820 | 425,796 | . _.___ 46 9, 256
2N 30 741 22,230 448, 026 5 51 8,785
21 27 741 | 20.007 | 468,033 1 52 9, 001
22 42 741 31122 | 499,155 1 53 9, 418
23 20 741 | 14,820 | S513.975 |........ 53 9, 698

Next Schnabel points out that if T,=71 for all 7

and states that “This formula is applicable to the
data of experiments in which the number tagged
1s held constant after a certain point. This method
has the disadvantage that the data taken before
T become constant are not utilized.”

It may be readily seen that if we consider the
sum of the samples in this last case as a single
large sample, formula 19 is identical with formula
1. Thus the simple case considered earlier may
be regarded as a special case of the method of
the present section.

Schnabel’s formula 18 has been employe.d by
Ricker (1942, 1945a) to estimate fish populations
of lakes and ponds in Indiana. Ricker has as-
sumed that, in situations where this formula is
applicable, the fiducial limits of the Poisson distri-
bution applied to =f; would give some idea of the
variability ascribable to random sampling (Ricker
1945b), but also states that ‘““an estimate of error
obtained directly from the data themselves, for
both the general and the special case, is to be
desired.”

Underhill (1941) applied this method and
formula 18 to the computation of a chub-sucker
population of a pond in New York, and Roach
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(1943) has done the same in estimating the white-
bass population of an Ohio lake.

Schumacher and Eschmeyer (1943) have de-
vised an estimate of N from repeated samplings
which is different from that of Schnabel. They
assume that the weight, or value, of each sample

is proportional to the number of fish in the sample.

Under this assumption, an estimate of NV is arrived
at by minimizing the sum of the squares of the

T
weighted discrepancies of the Ni from their esti-

mates ;—' This leads to the formula

which is applied by these authors to the estimation
of fish populations of a pond in Tennessee.

These authors have also derived an expression
for the sampling error of N. They take as the
standard error of NV the square root of

N3'2
A (21)
_EITtti
i=
where
ss—-——]'. i 3“1"5]
“K—1|fn N Y

In the last formula I have corrected a typo-
graphical error which appears in the original paper
(formula 3, page 234) and which Professor Schu-
macher has kindly pointed out in a private
communication.

In table 2 is recapltu]ated a numerical example
from Schumacher and Eschmeyer (1943), pertain-
mg to the estimation of a population of bullheads
in Yellow Creek Pond, Tenncssee. Substituting

- the appropriate sums from this table in formulae
[20] and [21], we obtain the following estimates
for N and its standard error (ox):

49,598,907

N 35,121 1,4l

. . 3121) _

——_(27.9922 =0.2228
7z (27.992263— 7257 ) =0.2228

_ [T A1¥0.2328) _ ;54
o= 35,121
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TABLE 2.—Schumacher and Eschmeyer's method of com-
puting a fish population by repeated sampling and marking

[Data from table 2 of Schumacher and Eschmeyer (19431]

of tmathed| Number | (RN
fish in osfqtlirslh)lin fish in I
Date (1941) | pond | 5P | campls Ti*ng Tt o
:
T; n 5
4 20, 631 92 0. 410256
4 159, 201 228 . 326531
4 530, G04 408 . 313725 .

5 621, 628 45 . RO2EST

19 2,337, 136 3268 4. 569620

81 2,314,432 1. 868 1. 488372

7 3, 4903, 161 1.869 1. Q0000

2 2, 1040, 582 613 . IS1818

11 4,113,158 3.6819 3. 184211

A 2, 788,102 1. 780 1. 13364

4 2, 075, 760 1,483 1. 066867

1 586, 756 383 . 250000

7 3, 667,225 2. 651 1. 960000

30 | 14,375,522 | 11,490 . 183673

12 | 10. 414,919 4, K9R 2, (128169

.......... 49, 598,907 | 35.121 | 27. 992263

Ricker (1945b) has investigated the relative
efficiency of Schumacher's estimate (20) and
Schnabel’s formula (18). He states:

From an exchange of letters with Dr. Schumacher it
appears that the efficiency of this expression is at a maxi-

T
mum when N is equal to 0.5, whereas Schnabel’s second, or

approximate formula becomes most efficient as (7/N) —0,
and the two formulae are of equal efficiency when
T/N=0.25. Consequently Schnabel's form will ordinarily
be best, since the value of T/N rises gradually from a very
small initial magnitude, and, except on quite small hodies
of water, will not often exceed 0.25 even when the experi-
ment comes to an end. Of course Schnabel’s long formula,
carried to several terms, can always be used if the best
possible estimate is desired; but the labor of computation
will rarely be warranted, considering the magnitude of the
sampling and probably systematic errors in such experi-
ments.

Krumholz (1944) has made a practical check of
the accuracy of estimation of a fish population by
repeated sampling, marking by clipped fins, and
the application of Schnabel’s formula (18). He
computed the population of fish over 45 milli-
meters in length in the north basin of T'win Lalke,
Mich., in this manner and then poisoned the area
with rotenone and counted the fish poulation
directly. He concluded:

The estimate from netting operations was very close to
that obtained by poisoning in this first check on the fin-
clipping method for estimating fish populations. Further
studies of this type are needed to prove definitely the
accuracy of the method. . . . Other checks of this method

will be made when conditions permit.
’
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ESTIMATION OF A CHANGING
POPULATION

Some fishes, such as salmon spawning in a given

stream or lake, do not always form a single, homo- .

geneous, completely mixed population. There
may be a tendency for the fish which migrate to
the spawning grounds earliest to complete their
spawning and die earliest; there results a positive
correlation between time of migration past a
point below the spawning grounds and the time of
appearance on, and of death at, the spawning
grounds. If, now, we are tagging fish below the
spawning grounds, or even on these grounds, and
later sampling for tag ratios, the “mixing” of the
fish between tagging and sampling is not complete,
and this.may need to be taken into consideration
in our estimation of the population. Similar
situations may occur among other migratory
animals.

When there exists such a correlation between
time of tagging and time of subsequent sampling,
the samples drawn during any particular part of
the season do not represent all parts of the popula-
“tion equally; the sample is not a random sample of
the whole population.” The possible effects of
this on our estimates by formula 1 are easily seen.

If, as has already been pointed out, all parts of the

population have the same tag ratio, if the tags are
“evenly distributed,”’ it will make no difference

whether the subsequent samples represent the

various parts of the population equally or not.
Likewise, if the population is “evenly”’ sampled
after tagging, that is, if the probability of a given
fish being included in the sample is not a function
of the time of sampling (and, therefore, not a
function of the time of tagging), any uneven dis-
tribution of tags by time of migration will have
no effect. If, on the other hand, the probability
of a fish being tagged (the tag ratio) varies with
the time of tagging, and the probability of being
included in the subsequent sample varies with the
time of sampling, and there also exists a correla-
tion betwecn time of tagging and time of sampling,
it is obvious that the tag ratio in the total sample
for the season will differ from that of the popula-
tion to some extent, depending on the magnitudes
of these factors. '

Presented here is a method of estimating the

population by which these errors may be reduced
when the tagging is done by means of numbered
tags, so that the relation between time of tagging
and time of recovery may bo estimated. I am
indebted to Dr. S. Lee Crump of the Iowa State
College Statistical Laboratory for much assistance
with the mathematies involved. '

If our tagged fish have been marked by num-
bered tags, we know both the date of tagging and
date of recovery for each one recovered. This
makes it possible to tabulate the recoveries by

“time of tagging and time of recovery, using as a

time interval a convenient period of days. Our
notations for the elements involved in the discus-
sion of this section, in addition to those introduced’
before, are as follows:

Let _

N_.=the total number of fish passing the point
of tagging during the a” period of tagging.
(@=1,2,3, ... a).

T.=the number of these fish which are {agged
during the o tagging period.

Ne;=the number of fish out of the Na that are
subsequently recovered during the i* recovery
period.

T.;=the number of fish out of the T, that die
and are thus available to be recovered during the
1% recovery period.

Mq=the number of tagged fish tageed during
the o* period of tagging and récovered during the
1 period of recovery (1=1,2,3, . . . 8).

m’ ., =the number of untagged fish passing the
point of tagging during the o™ tagging period and
recovered during the i'* recovery period.

The following summation conventions are em-
ployed: )

E}_,f‘m,,i=m,,. }_:‘_,-ma,=m., Z)Zim.,,=m.. .
a
Em';;=m'u. E‘ln'ai:m'.;
H o
S ar=1,.
Obviousl'y, .

Mo+ M ge=1Ng.
Also let:

m..+m' =0
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N,=the number of fish dying on the spawning
grounds during the 2™ recovery period.

Zna,
qa= N.
. > T e
Pi= "‘N' -

The data available from a given experiment can
be laid out in a table as follows:

Period of tagging () Total
. tagged Tf‘:{’q'i‘l‘l
fish s
recny- | Tecov-
1 2 3...a ered ered
Ycriod of ricovery (i):
1 mu | ma my . .. Mal m. Ci
2.0 mp | ma | m. .. Ma m.2 Cy
3.. S M | ma | mn. .. ma m.a Cs
5 e | me | ma .. ma | m ¢,
Total tagged fish re-
covered. ... . | ma Mmi. .. NMa mo. .
- (=t
Total fish tagged..| T3 Ta Ty...Ta

Of course, 2 3T,=T and > Ci=n.

Now, the number of fish passing the tagging
point during « which die during period  might be
estimated by

n*¢1=}2':: ........ (22)
(I shall denote “estimate of” by the asterisk
herein) where P,; is the probability of a fish being
tagged during « and recovered during ¢. This
probability is unknown, and our best available
estimate of it seems to-be the joint probability
PiJe, where these terms are as defined above.
This amounts to taking as the probability of
recovery the average probability of recovery of

all the fish passing the tagging point during e, -

and as the probability of being tagged the average
probability of being tagged of all the fish dying
during period <.

If the samples drawn for tagging and the samples
later drawn for tag ratios are representative of the
parts of the population from which they are
drawn, Pi and ¢, may be cstimated from the-data
as follows: '

g __Ma,

’ 'I e Ta
......... (23)

Pi*="21

Ci

The estimate of 7, is, then, given by
* Mot
Mg,
which is equivalent to
T. ¢,
Ma. M.y
The estimate of the total population is obtained
by summing all these n*;, thus
T.C;
=23 M
" A somewhat more rigorous derivation, based on
Bayes’ theorem, has been suggested by Dr.
Crump:
The problem is to estimate the n.. and the g,..
if we can do this we can take as our estimate of N,
*
- N=DA
Let P(i/a) be the probability that a fish tagged
during the o™ period dies and is recovered during
the i recovery period. Now we have C; fish
taken during the i”' recovery period to be allo-
cated over the ‘‘a” tagging periods, and hence
wo want the probablhty that a fish taken during
the 2" recovery period is one of those which passed
the tagging point during the a* tagging period.
Denote by P(efi) the desired probability, and by
P(a) the true proportion of the n fish recovered
which passed the tagging point during the o'
tagging period. Then by Bayes’ theorem
n P(i/e)P(a) o
Plafi)= ——_—ZP(Z/a)P(a) ..... 26)

we have the problem of estimating the P(z/a)
and the Pla).

'n*.n- =Mai —— —— o ¢ s s 2 » (2 4)

Now,
b $nai
Pla)= p
and we may estimate P(a) by
xy Mo, . -
P (a)—m" .. .. ..... @n

To estimate P(i/a) we may use
. P*(z/a)—%—' ........ (28)

Then our estimate of P(a/z,) beuomes
7na.mai 'nal
M.. Mo, M. _ My

* 5 = 9
P*(afi) Matay My M’ (..9).
M., M.
This gives us for an estimate of n,.
=33 CPHaf)=33C1 ; Zel L (30)
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TaBLE 3.—Dala from a lagging experiment on migrating adult sockeye salmon

Wecek of tagging (o) Total Total
tagged fish | fish re- Cifm-i
1 9 3 4 5 Py 7 s recovered | covered
Week of recovery (): mei C;

1 3 19 6.33

19 132 6.95

82 800 8. 70

184 2.848 15. 48

159 3,476 21. 86

3 9 644 71. 56

10 30 1,247 41. 57

6 26 930 35.77

2 8 376 47.00

Total tagged fish recovercd ma- . __....._. 3 11 7 180 183 60 [ 1 51 I (R

Total fish tagged Tore oo -ooooeee e cmeeae 15 59 410 605 778 13835 59 R RN (SRR PR

TafMate e e 5.00 5.36 5.39 3.86 4.22 5.58 9.83 5,00 {oe e e
SCi=10,472.
2Ta=2,351,

Taking our estimate of ga as before (23), and as
our estimate of N

N*=3>" ";;‘ ........ @31)
we have, then,
at Ta
=330 Ze S tRREE (32)

Whl('h is the same result as obta,med in formula 25.

Application of this method of population estima-
tion may be illustrated by the data from a tagging
experiment conducted by me on a migrating popu-
lation of adult sockeye salmon in British Columbia.
A total of 2,351 fish were tagged in a certain river,
on the way to their spawning grounds, over an
S-week period. Later, tag-ratio samples were
drawn regularly over a 9-week period as-the fish
spawned and died on the spawning grounds
farther upstream: 10,472 fish, of which 520 had
been tagged, wore recovered in these samples. In
table 3 are tabulated, in the same form as the
table on page 200, tag recoveries by week of tagging
and week of recovery, with data on total numbers
tagged and recovered for each week. From these
data are computed values of T./m.. and C;/m.;
tabulated along the margins. From these com-
puted values and the tag-recovery data tabulated
in the body of the table has been computed the
estimate of the population, as shown in table 4,
according to formulae 24 and 25 (or 32). The
values in the body of this table are values of

T. C. which sum to the estimate of NV,
Mo, Mg

47,860 fish.

n ai=Ma; —

. o practical situation of this sort.

TasLE 4.—Computation of population estimale by formulae
24 and 25 from the data of table 3

‘Week of tagging (a)
Total
1|2 3 4 5 6 7 ]
Woek of recovery (i):

___________________________________ . i)
2__ __________________ ----| 658
3. 453 ... —--a| 3,746
4. 4,877( 1,200]....__ --{12,308
5. 7,103] 3,049 _____ .-[15.129
6._. 604 1,198 .| --| 8,017
7-- 2,807 2,320f 409| 208] 6, 065
. SO, N 1.057] 1,198) 1,758|..__| 5,173
| S SN 595 525_.____ —-—-| 1,664
Total 16, 996| 9, 499] 2,167| 208)47, 860

From formula 25 (or 32) it may be seen that
where the tagging or the sampling is uniform, this
estimate reverts to the simple case first discussed.
For, if the probability of being tagged is constant

for all i, the expected value of —15' =Hn—’ a constant.
" -
Then,

n T
sz‘” Ra m--_ m. - (33)
which is identical with formula 1 since m..=¢ in

formula 1.
Likewise, if the probabiliity of being recovered is

constant, the expected value of T is %, a constant,
ai ..

Then, .
G T T,
EZ T W""(M)
The tagging experiment 1llust.ra.t.ed in table 3 is
Although the
probability of a fish being recovered, estimated
from Cy/m.,, changed very much during the course
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of the season, the probability of being tagged, _(10,472) (2,351)

—47,34
judged from T./m,- was fairly even over most of N 520 7,345
the season. In consequence, the estimate from  is practically identical with the estimate from
the simple formula (1) formula 25 (or 32).
. T=1000
n=2000
A7 .6
.16 - /]
//,'
.15 //,/
: L7
14 i
A
13 /] ya
/ vV
Vi A 8
4 7
A2 // 7
// //
i 4 i -9~
/// i ///
10 y L/ 10
' )4 /
L/ /] "n »
9 v, - -’
4 ] 12 o
~poe Y4 =
M <
. .07
-15 &
5 06
o. ) / "
.|
w.0s ./ ) 20 «
-~ L/ / )
< 04 A ¥ og @
(& 4 V4
ey / A 30
/ L =
.03 Vi v '
// ] 40
. /
.02 60
o1 "?go
AL ' 200
e .
00 ©

00 O .02 .03 04 .05 .06 .07 .08 09 .10 . .2 I3 .44 .S
SCALE OF P*=E |

Confidence limits on sample tag ratios and on estimated population numbers, at a confidence level of 95 percent, for
experiments involving 1,000 tagged individuals and samples of 2,000.
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