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Abstract—Natural mortality (M) is 
one of the most important life histo-
ry attributes of functioning fish pop-
ulations. The most common methods 
to estimate M in fish populations 
provide point estimates which are 
usually constant across sizes and 
ages. In this article, we propose a 
framework for incorporating uncer-
tainty into the length-based estima-
tor of mortality that is based on von 
Bertalanffy growth function (VBGF) 
parameters determined with Bayes-
ian analysis and asymmetric error 
distributions. Two methods to incor-
porate uncertainty in M estimates 
are evaluated. First, we use Mar-
kov chains of the estimated VBGF 
parameters directly when comput-
ing M and second, we simulate the 
posterior distribution of VBGF pa-
rameters with the copula method. 
These 2 approaches were applied 
and compared by using the exten-
sive database available on age and 
growth for southern blue whiting 
(Micromesistius australis) harvested 
in the southeast Pacific. The copula 
approach provides advantages over 
Markov chains and requires far 
less computational time, while con-
serving the underlying dependence 
structure in the posterior distribu-
tion of the VBGF parameters. The 
incorporation of uncertainty into 
length-based estimates of mortality 
provides a promising way for model-
ing fish population dynamics.

Natural mortality (M) rate is one of 
the most important parameters shap-
ing the population dynamics of fish 
populations (Siegfried and Sansó1; 
Brodziak et al., 2011). It is defined as 
the death rate of fish due to causes 
other than fishing, such as predation, 
senescence, cannibalism, starvation, 
and other natural factors. Despite 
the key importance of M in fish and 
fisheries modeling, this parameter is 
extraordinarily difficult to estimate 
accurately. Methods for determin-
ing M in fish populations generally 
entail one of 2 approaches: 1) direct 
methods which estimate M from ob-
servations on survival, with methods 
derived from tagging or telemetry 
experiments, 2) indirect methods 
that estimate mortality from other, 
more easily obtained parameters, of-
ten from life history traits, such as 
age and growth, and maturity. Direct 
methods provide the most precise es-
timates of M, but those approaches 

1 Siegfried, K. I., and B. Sansó. 2009. A 
review for estimating natural mortality 
in fish populations. Southeast Data, As-
sessment, and Review SEDAR 19-RD29, 
31 p. [Available from website.]

are data intensive and usually cost 
prohibitive and therefore preclude 
their application to a large number 
of fish stocks. Indirect methods are 
therefore commonly applied because 
they are easy, fast, and cheap to 
implement for most harvested fish 
populations.

Indirect estimators are based on 
correlations of M in well-studied 
stocks with other life history attri-
butes, such as individual growth, 
longevity and maturity. The underly-
ing assumption in all indirect meth-
ods is that the relationship between 
M and other life history parameters 
is the same for thoroughly studied 
stocks and lesser-studied ones where 
this method is usually applied. For 
most indirect methods, an estimate 
of M is computed, which is invariant 
across age and size classes, although 
this parameter is dependent on age 
and size (Gislason et al., 2010). The 
relationship between M and age and 
size is usually defined as a negative 
exponential function in which early 
life stages include much greater mor-
tality than later ones, especially af-
ter reaching sexual maturity. Never-
theless, M estimators, whether they 
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are size dependent or not, provide only point estimates 
of mortality. Uncertainty in M estimates from indirect 
methods have not been investigated in detail and have 
usually been based on ad-hoc approaches (Cubillos et 
al., 1999; Quiroz et al., 2010; Wiff et al., 2011). These 
methods incorporate uncertainty in M by taking growth 
parameters from the literature and their associated 
uncertainty (e.g. standard deviation, covariance, confi-
dence interval), and then by drawing empirical distri-
butions of these parameters to propagate uncertainty 
in M estimates, usually assuming Gaussian error.

A promising method for estimating M-at-length 
based on life history theory, has recently been proposed 
by Gislason et al. (2010) and Charnov et al. (2013), and 
depends entirely on von Bertalanffy growth function 
(VBGF) parameters. For these researchers, appropriate 
uncertainty in growth estimates become a key issue 
in assessing uncertainty in M estimates. Most ad-hoc 
approaches to incorporate statistical variability in M 
are based on a 2-step model that keeps estimations of 
growth parameters and M separated. Therefore, in this 
article, we consider the inclusion of 2 different sources 
of uncertainty in the modeling, one over the growth 
parameters and another from the proposed structural 
M-at-length mortality estimator.

Uncertainty in M estimates derived from indirect 
methods come from 2 main sources. First, uncertainty 
depends on the variability among species or stocks for 
which the empirical relationship has been proposed. 
This source of uncertainty is usually referred to as 
“method error” because it represents how “accurate” 
the empirical model is (Quiroz et al., 2012). The second 
source of uncertainty is related to the error within the 
species-specific parameters that feeds into the indirect 
method (e.g., growth parameters). This source of uncer-
tainty is called “trait error” because it represents the 
uncertainty in life history parameters of the stock or 
population for which M is being estimated.

 The trait-error of estimated growth parameters 
can be converted into M estimates as the iterative 
parameter updates of a Bayesian estimation with a 
non-Gaussian distribution. In particular, Gaussian er-
ror distribution for estimating growth parameters can 
resolve some even nonsensical shortcomings, for in-
stance negative length values. Distributions based on 
age–length fishing selectivity are usually skewed as a 
result of a size-selective sampling process (Contreras-
Reyes et al., 2014; Montenegro and Branco, 2016). In 
addition, in harvested fish populations, an accumula-
tive effect of fishing on size-at-age exists. Growth rates 
vary among individuals (Sainsbury, 1980) and fishing 
selectivity removes faster growing individuals from 
each particular age class. Moreover, in some studies, in 
which VBGF parameters are estimated, the assumption 
of Gaussian error distribution sometimes lacks adequa-
cy, especially with the presence of outliers, which could 
lead to questionable estimates (see Contreras-Reyes 
and Arellano-Valle, 2013; Contreras-Reyes et al., 2014, 
and references therein).

In our analysis we used 2 methods to incorporate 

uncertainties in the M-at-length estimates. Both de-
pend on information that can be drawn from a Bayes-
ian estimation derived from VBGF parameters. The 
first method takes advantage of the Markov chains 
and, after convergence, those chains are directly incor-
porated into the M calculation. In particular, we used 
the Bayesian results generated by López Quintero et al. 
(2017) as a baseline. For the second method, we propose 
taking the dependent structure, which is concentrated 
in the posterior distribution of parameters, and using 
this structure for simulating a distribution with the 
same dependent features based on the copula method 
(Nelsen, 2006). This last approach has the advantage 
that, even without the precision in the joint distribu-
tion of parameters, we can obtain samples that pre-
serve the dependence between the observed variables 
by only approximating its marginal distributions, at a 
much lower computational cost. We apply the length-
based M estimators, using a data set corresponding to 
24,942 individuals of southern blue whiting (Microme-
sistius australis) collected from Chilean continental 
waters over the period 1997–2010 (J. Contreras-Reyes, 
unpubl. data). Their total lengths and ages were re-
corded and assigned by studying their otoliths. Further 
information about this data set can be found in Contre-
ras-Reyes et al. (2014) and references therein.

Material and methods

Growth model and M-at-length

Let L(x) be the theoretical expected value of the length 
related to an individual at age x. The (specialized) 
VBGF function is defined as

 L(x)= L∞(1−e−K(x – t0 )).  (1)

This equation represents the simplest formulation of 
the VBGF (Essington et al., 2001), which is described 
by 3 parameters: L∞ represents asymptotic length (in 
length units e.g. centimeters): Κ represents the growth 
rate coefficient usually expressed in inverse time units: 
and t0 is the theoretical age (usually in years) at length 
zero. Parameters of the VBGF are estimated from ob-
served length-at-age pairs such as (x, y), where y is the 
length at age x.

Equation 1 can also be modeled in terms of a multi-
plicative structure for random errors

 yi = L(xi )ei ,  (2)

where yi = the length at age xi of the ith sampled sub-
ject, i = 1,...,n; L∞>0, Κ>0, t<min{x1,…,xn}; and εi are 
independent (not necessarily identical) non-negative 
random errors (Contreras-Reyes et al., 2014). 

With this assumption, the VBGF in Equation 2 corre-
sponds to the multiplicative nonlinear regression with 
logarithmic random errors. The additive structure of 
the original model in Equation 2 is easily recovered by 
applying logarithmic properties, such as y′i = L′(xi) + εi′, 
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with y′i = log yi, L′(xi) = log L(xi), and εi′ = log εi which 
are independent random errors. The estimated param-
eters can be used to compute a M-at-length estimator.

Gislason et al. (2010) proposed an indirect method 
for estimating M-at-length, using previous estimations 
of M, habitat temperature and the VBGF parameters. 
Their proposed M-at-length estimator is only a func-
tion of the VBGF parameters and habitat temperature. 
Charnov et al. (2013) re-analyzed the data set assem-
bled by Gislason et al. (2010) and concluded that coeffi-
cients of growth parameters of the previous M-at-length 
estimator did not differ from the general life history 
theory described in Charnov (1993). The analysis in 
Charnov et al. (2013) also provides a theoretical basis 
for estimating indirectly M-at-length from life history 
theory. In this reductionist approach, the M-at-length 
in fish populations is based entirely on the VBGF pa-
rameters and can be estimated by the expression

 M(L)= K L∞
L( )3/2

,  (3)

where M = the natural mortality rate at length L; and 
the other parameters are estimated from 
the VGBF.

Natural mortality model

Method error was incorporated in this model by follow-
ing a log-normal regression model of the form

 log M(L)= b0+ b1 log L∞
L + b2 log K + logh,  (4)

where log η = an independent additive Gaussian error, 
log η N(0,ση

2).

Parameter ση
2  corresponds to the uncertainty given by 

the mortality expression (Eq. 3), which came from the 
Gislason et al. (2010) database and comprises 168 more 
or less independent estimates for marine and brack-
ish water fish. In order to have an approximation of 
ση

2, as well as β0, β1, and β2, we estimate the log-normal 
regression model with normal prior distributions with 
mean 0 and large variance for βi, N(0,ση

2), i = 0, 1, 2, 
and an inverse gamma distribution, Inv-Γ(α,β), for with 
small values for the scale and rate hyperparameters, 
(α, β) on a Bayesian framework. 

In the Results section, the estimated parameters 
are presented with this approach for the same data set 
used by Charnov et al. (2013).

Life history parameters

Bayesian approach Assuming the multiplicative struc-
ture of Equation 3, Contreras-Reyes et al. (2014) con-
sidered a skew-t distribution for the errors εi′, denoted 
by εi′ = log εi  ST( µi ,s i

2,l,n ), i=1,…,n.  More specifi-
cally, we assumed that the original multiplicative er-
rors εi, i = 1,…, n, are independently distributed ran-
dom variables following a log-skew-t distribution (Az-
zalini et al., 2002; Marchenko and Genton, 2010) with 
parameters of location, dispersion, shape and degrees 
of freedom given by μi, sh

2, λ, and ν>2, respective-

ly. Then, the log-transformed lengths are yi′ = log yi 
 ST( µi + Li ,s i

2,l,n ),  i = 1,…, n, with Li′ = log L(xi). 
Thus, the density of yi′ = log yi is

 

f (yi
′|xi , µi ,s i

2,l,n )=

2
s i

t(zi ;n )T lzi
n+1

n+zi
2 ;n +1( ), yi

′ ∈ R,  (5)

where zi = (yi′ – μi − Li′) / σi is a standardized ver-
sion of yi′, and t(z; ν) and Τ(z; ν) represent the usual 
symmetric Student’s  t density and cumulative distri-
bution function, respectively. In this case, we assume 
that the original lengths follow a log-skew-t distribu-
tion, denoted by yi LST µi + Li ,s i

2,l,n( ),  i = 1,…, n. 
The power function m(ρ; xi) = xi

2r introduces heterosce-
dasticity into the dispersion parameter s i

2  = σ2m(ρ; xi) 
(Contreras-Reyes and Arellano-Valle, 2013).

A Bayesian analysis for the log-skew-t VBGF is pro-
posed. If independence is assumed, the likelihood func-
tion f (y′|x, θ) of the unknown parameter vector θ = 
(L∞, K, t0, σ2, ρ, λ, ν)T = (βT, σ2, ρ, λ, ν)T is considered 
with Equation 5. The Bayesian model specification in-
volves a prior distribution for each parameter of θ to 
be inserted into Equation 3 in the case of L∞ and K, 
respectively and inference on θ rests on posterior dis-
tribution π(θ|x, y′) α f (y′|x, θ) π(θ).

In the specific case of southern blue whiting (López 
Quintero et al., 2017), the prior distributions were 
the following: L∞~TN(0,∞) (0,100); K~Γ(15,100); −t0~ 
Γ(14,4); π(ρ) α 1 (a non-informative prior density); 
σ−2 ~Γ(0.1,0.1); λ~N(0,100); and ν~TE[2,∞) (0.5), where 
TN(0,∞) (0,σ2) denotes the truncated normal density at 
interval (0,∞) with zero mean and variance σ2, TE[c,∞) 
(λ) denotes the truncated exponential density at inter-
val [c,∞) with parameter λ, and Γ(α, β) represents the 
gamma distribution whose shape and rate parameter 
are α and β, respectively.

Copula approach The copula method is used when con-
sidering 2 random variables represented by their joint 
(cumulative) distribution function, H(u,v) = H(F(x), 
G(y)), where u and v denote the values of F(x),  and 
G(y), respectively. Our main objective is to simulate 
random variables from H(u,v).

Most of the sampling methods are based on the as-
sumption that F(x) and G(y) are known but the joint 
distribution H(F(x), G(y)) is not. A naive framework 
would be that in which samples are drawn indepen-
dently from each marginal distribution, yet this ap-
proach is would be misleading because underlying de-
pendent structures in H will be lost. Alternatively, a 
copula C between F and G can be used as a function 
such that C(F(x), G(x)) = H(u,v). This function can be 
recognized as a distribution function on [0,1]d (for a 
dimension d) whose arguments are the marginal distri-
bution of the joint distribution. Thus, as in any statisti-
cal distribution, C depends on some parameters, say θ.

A copula can be simulated by using different ap-
proaches depending on the family they belong to, e.g., 
Gaussian, Archimedean, Extreme-value, and others. 
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Each of these families have their own set of parameters 
(dos Santos Silva and Lopes, 2008). Owing to an impor-
tant result from copula theory, we are able to simulate 
from H, even if unknown, only requiring the marginal 
distributions, F and G, and the copula Cθ (see Sklar’s 
Theorem in Nelsen, 2006).

In order to imitate the joint distribution H, the cop-
ula Cθ and the marginal distributions F and G need 
to be estimated. Doing so could create various situ-
ations, namely: if F and G belong to known families, 
we could use a parametric framework to obtain C {θ, by 
either estimating all parameters associated with both 
marginal and copula inside a single routine in a proce-
dure known as full maximum-likelihood, or by estimat-
ing the parameters in 2 stages. The first stage includes 
estimating parameters of marginal distributions and 
afterwards the parameters in copula. This approach 
is commonly known as inference functions for margins 
(Cherubini et al., 2004). There are also intermediate 
procedures where the marginal distributions are es-
timated nonparametrically. Results are then plugged 
into the copula parameters obtained by the maximum 
likelihood estimation. This latter approach is called 
“canonical maximum likelihood”or “maximum pseudo-
likelihood” and is based on the empirical estimation of 
the distribution functions F and G. This strategy is ap-
plied when the families of marginal distributions are 
unknown (McNeil et al., 2005). In all these cases, to 
estimate the copula C we need approximations for F 
and G, denoted by F { and G {, respectively. These quanti-
ties are known as “pseudo-samples” or “pseudo-obser-
vations” and provide valuable information for the type 
of dependency between the original variables (see Fig. 
2 and McNeil et al., 2005).

We obtained the empirical posterior distributions for 
K and L∞, where the exact marginal and joint family 
distributions are unknown. We consider the Gaussian 
copula with parameter ρ, |ρ|<1, which is the usual 
correlation coefficient that measures the linear asso-
ciation between 2 variables.

The Gaussian copula has a nonclosed form,

 
Cr (u,u)=

1

2p 1−r2 −∞

F−1 (u)
∫ −∞

F−1 (u )
∫ e

w2−2rwz+z2

2(1−r2 ) dwdz,
 

(6)

and to estimate it, the likelihood function,

 
(r)= log cr F( x̂i ),G( ŷi ){ }⎡

⎣⎢
⎤
⎦⎥i=1

n∑ ,   (7)

needs to be maximized, where cr (a,b)= ∂2

∂u∂u Cr (u,u). 
and Φ(•) represents the cumulative normal distribution. 
We are following the maximum pseudolikelihood ap-
proach where the marginal distributions F(x) and G(y) 
are estimated nonparametrically as follows:

 
F( x̂i )=

1
n+1

I K ≤ xi{ } andi=1
n∑  (8)

 
G( x̂i )=

1
n+1

I L∞ ≤ yi{ } .i=1
n∑  (9)

Using the copula estimate parameters, we draw 
samples from Cθ = Cρ, as suggested in Nelsen (2006). 

Furthermore, to obtain samples on the same scale of K 
and L∞, instead of the (0,1) interval, we apply the ap-
propriate quantile functions to the simulated marginal 
copula. These quantile functions depend on the original 
marginal distributions.

M-at-length estimation

To obtain an estimator of Equation 3, we take N esti-
mated values of parameters L∞ and K, represented as 
L∞

(j) and K(j), respectively, j = 1,...,N. All these values 
are used for each of the values of fish lengths, yi, i = 
1,...,J, where the value of J is one of the distinct val-
ues of the age. The estimated values K(j) and L∞

(j) are 
obtained from either the Bayesian chains values after 
convergence or from the copula simulation. To complete 
the estimator, it is then perturbed with the uncertainty 
ηi (method error) of Equation 4, recovered from the M 
modeling,

 
Myi

( j) = K ( j) L∞
( j)

yi

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

3/2

hi ,  (10)

with j = 1,...,N, i = 1,...,J. 

In order to emphasize that the mortality estimator de-
pends on individual i through the length variable, y, 
the subscript yi is  added to the notation. Using the 
Equation 10, we draw samples at each length i. Uncer-
tainty in the VBGF parameters (trait error) is guaran-
teed by using Markov chains or copula iterations, the 
incorporation of ηi, whereas M estimators have their 
own uncertainty abridged ση parameter.

Furthermore, to include the dependence structure 
between age and length in the mortality estimation, 
we use the predicted value L̂(xi )  instead of yi. Using 
Equation 1, we obtain the mortality estimator with the 
following equation:

 
Myi

( j) = K ( j) L∞
( j)

L̂(xi|b)

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

3/2

hi ,  (11)

where j = 1,...,N;
 i = 1,...,J; and
 b  = ( L∞, K , t0)T are point estimates, such as median 

values from posterior distribution for (L∞, K, 
t0) which can be taken from previous studies. 

Results from both approaches, with Bayesian chains or 
copula simulation, are then compared.

All statistical methods used in this study were de-
veloped with the software R2 (vers. 3.1.0 or higher; 
R Core Team, 2014). Bayesian estimations were car-
ried out with the program JAGS, vers. 3.4 or higher 
(Plummer, 2003). Copula estimation was conducted 
with the R package copula, vers. 0.999-12 or higher, 
developed by Hofert et al. (2015). The length and the 

2 Mention of trade names or commercial companies is for iden-
tification purposes only and does not imply endorsement by 
the National Marine Fisheries Service, NOAA.
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burn-in period of the considered chains is 20,000 it-
erations and 10,000, respectively. Last, a machine 
running on Linux (kernel 4.6), with an Intel Core 
i5 processor (Intel Corp., Santa Clara, CA) and 7.7 
GB of random-access memory, processed all these 
computations.

Results

Table 1  shows the estimates from the M model with 
Bayesian inference. Differences between these results 
and those reported in Charnov et al. (2013) were 
caused by the method used to incorporate uncertainty. 
However, the actual values of the estimated parame-
ters were very similar. The standard deviation, ση, is 
then a key parameter underpinning the method error, 
which is assumed to be a log-normal random variable 
η in Equations 10 and 11.

Figure 1 shows  the application of the power log-
skew-t model fitted to the observed length-at-age data 
(for southern blue whiting) by using the VBGF pa-
rameters summarized in Table 2  and estimated with 
Bayesian inference. This curve was created by simu-
lating 10,000 log-skew-t random values from each age 
and then by taking the 95% highest posterior density 
interval. Further details regarding the Bayesian es-
timation, such as residual diagnostic and sensitivity 
analysis, can be found in López Quintero et al. (2017). 
Those authors also showed that the heteroscedastic 
parameter allows a better model with small variance 
across observed ages in southern blue whiting. In ad-
dition, extreme values for younger and older fish (i.e., 
<9 and >16 years) were accounted for by the estimated 
degree of freedom parameter. Moreover, the credibility 
intervals showed that observations were affected by 
the negative heteroscedastic parameter, ρ [.

The marginal distributions estimated empirically 
with Equations 8 and 9 and the pseudosamples F [ and 
G [ from copula are shown in Figure 2. We first observed 
that points concentrate around the diagonal of unit 
square. The relationship between pseudosamples is 
linear and negative. Particularly, the Bayesian Markov 
chain simulation, shown in Figure 2A, which was ob-
tained directly from the estimated VBGF parameters. 

Table 1

Mean estimates, with standard deviations (SDs) and 
95% highest posterior density (HPD) intervals, of 
Bayesian log-normal model parameters from fitting 
the regression of natural mortality (M) to the von Ber-
talanffy growth function parameters, the asymptotic 
length, the growth rate coefficient, and the theoretical 
age at length zero by using the Equation 4 and data in 
Charnov et al. (2013).

   95% HPD 
Parameter Estimates SD interval

β0 −0.050 0.110 −0.267, 0.163
β1 −1.467 0.125 −1.714, −1.226
β2 1.007 0.075 0.860, 1.153
ση 0.749 0.041 0.666, 0.825

Figure 1
Length-at-age composition for southern blue whiting 
(Micromesistius australis) collected from Chilean con-
tinental waters during 1997–2010 (open circles), fitted 
with the von Bertalanffy growth function: the solid 
line corresponds to the fit of the log-skew-t model with 
a heteroscedastic power variance function (Table 2). 
Dashed lines correspond to the 95% highest posterior 
density for the fitted log-skew-t model. Fish length was 
measured as total length in centimeters.

Table 2

Mean estimates, with standard deviations (SDs) and 
95% highest posterior density (HPD) intervals, of the 
von Bertalanffy growth function parameters from the 
power log-skew-t model. The parameters are asymptotic 
length (L∞), growth rate coefficient (K), negative theo-
retical age at length zero (−t0), heteroscedasticity (ρ), 
dispersion (σ2), skewness (λ), and degrees of freedom 
(ν).

   95% HPD 
Parameter Estimates SD interval

L∞ 59.573 0.090 59.386, 59.755
K 0.162 0.001 0.159, 0.165
−t0 2.454 0.042 2.367, 2.541
ρ −0.180 0.009 −0.197, −0.161
σ2 0.011 0.001 0.010, 0.013
λ −1.096 0.053 −1.200, −0.997
ν 14.322 1.047 12.457, 16.586
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Figure 2
Scatter plots of pseudo-observations, or approximations of distribution functions (F [ and G [), 
from simulations (A) where Markov chains of estimated von Bertalanffy growth function 
(VBGF) parameters were used directly and (B) where copulas were applied to the posterior 
distribution of VBGF parameters.

G
[

G
[

F [F [

A B

Figure 3
Scatter plots of asymptotic length (L∞) and growth rate coefficient (K) of the von Bertalanffy growth 
function showing results (A) from simulations based on posterior distribution and (B) from the copula 
approach.

A B

KK

L∞L∞

In Figure 2B, the relationship between both parame-
ters was recovered by using a Gaussian copula drawing 
from the empirical posterior distribution. Both plots 
corresponded with a graphical representation of the 
intrinsic dependence of the pseudosamples.

Figures 3A  and 3B show the estimated parameters 
from chains and their marginal histograms are dis-
played in Figures 4A  and 4B. The histograms in Fig-
ure 4C and 4B were built by assigning a roughly heu-
ristic normal distribution to each marginal, but other 
alternatives are still possible. These plots ensure the 

dependence and shape between K and L∞ parameters. 
We can also include the related quantile functions in 
the sample generation if the exact distributions for K 
and L∞ are known. In our study, we particularly consid-
ered the Gaussian copula in Figure 3B because of the 
dependence between pseudosamples generated for both 
marginal posterior distributions of K and L∞ which 
looked linear and strongly negative (Fig. 3A; coeffi-
cient of correlation [r]= −0.912 (standard error 0.006; 
t-value= −157.14; P-value <0.001).

Additionally, both methods showed a strong correla-
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tion between K and L∞. Note the copula method keeps 
the correlation structure reported in Siegfried and 
Sansó (2006) and López Quintero et al. (2017). These 
simulated values of K(j) and L∞

(j), from both, Markov 
chain or from copula, will be used in the expression 
M-at-length estimation.

Figure 5  shows the simulated M derived from 
Equations 10 and 11, by using both the Markov chains 
and copula approaches. Uncertainty at each age was 
incorporated by simulating the posterior distribu-
tions of each VBGF parameter. The uncertainty for the 
method error was incorporated through the random 
variable η (as explained in the Materials and meth-
ods section). The empirical distributions related to the 
copula method showed a similar shape to that with 
the Markov chains method because we have assumed 
marginals of the Gaussian family.  The empirical dis-
tributions behavior can change depending on the class 
of copula used and the available information for mar-
ginals (dos Santos Silva and Lopes, 2008). Moreover, it 
has been assumed that M follows a slow exponential 
decay with length (Gedamke and Hoenig, 2006). On 

the other hand, recent empirical and theoretical work 
has shown that M represents a decreasing exponential 
function of length in fish populations (Gislason et al., 
2010; Charnov et al., 2013). Specifically, for both meth-
ods, the percent change in the median values from the 
first to the sixth year is around 57%. It is important 
to note that the most of the methods used to estimate 
M consider this parameter as constant across ages and 
lengths within species (e.g. Pauly, 1980; Hewitt and 
Hoenig, 2005). These indirect methods are based on the 
assumption that M remains relatively constant in fish 
after they reach sexual maturity.

Discussion

We presented a mortality estimator that incorporates 
2 sources of variability or uncertainty. One of them 
is associated with the VBGF parameters (trait error) 
and the other is related to the mortality model (model 
error) which is related to uncertainty in the original 
method described in Charnov et al. (2013). In relation 

Figure 4
Histograms of the asymptotic length (L∞) and growth rate coefficient (K) of the von Berta-
lanffy growth function (A–B) from simulations based on posterior distributions and (C–D) 
from the copula approach. To make the histograms easy to compare, they were built to have 
a total area of 1 (“density” on the y-axis).
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Figure 5
Boxplots of estimates of natural mortality in relation to total length (in centimeters) age in years 
(A) from direct simulation with Markov chains and (B) with the use of the copula method. The 
vertical black lines correspond to the observed median, the boxes represent the observed interval 
from the 25% residual quartile to the 75% residual quartile, the error bars are the observed inter-
val from minimum to maximum residual value, and the dots are atypical residual values.
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to the trait error, we presented 2 ways to incorporate 
uncertainty in length-based M estimators, drawing on 
an empirical distribution of VBGF parameters. First, 
the applied Bayesian methods simulate the M esti-
mator directly with the posterior distribution of the 
VBGF parameters, with the method of López Quintero 
et al. (2017). This particular approach was preferred 
over that for traditional distributions (Siegfried and 
Sansó, 2006; Hamel, 2015), because this type of data 
usually contains a degree of asymmetry and extreme 
values. Additionally, an inadequate distribution may 
underestimate the real variance contained in the data. 
The model used gives great flexibility in modeling het-
eroscedasticity by adding a function dependent on the 
scale σ2 and a heteroscedastic parameter, ρ (Contreras-
Reyes et al., 2014). In addition, a copula method was 
usedd to approximate the posterior distribution and 
calculate the M estimator. The method proposed in this 
study provides a way to incorporate uncertainty in the 
length-based M estimator proposed by Charnov et al. 
(2013), while acknowledging both method and traits er-
rors. Furthermore, our scheme can easily be extended 
to generate values of uncertainty in indirect methods 
used to estimate mortality, and therefore has the poten-
tial to improve actual ad-hoc methods for incorporating 

uncertainty, such as in Cubillos et al. (1999); Quiroz 
et al. (2010) and Wiff et al. (2011). Furthermore, we 
recommend the copula method instead of the Bayesian 
Markov chain approach to incorporate uncertainty in 
the M-at-length estimates for 2 reasons: 1) the copula 
method conserves the underlying dependence in the 
posterior distribution (see Figs. 3 and 4) and 2) it uses 
less computing time than the Bayesian Markov chain 
approach. For example, in our case the copula method 
required 1 s to compute each length class, whereas the 
same procedure takes at least 20 h with the Bayesian 
Markov chain approach. These differences in computa-
tional time result in part from the Metropolis–Hastings 
algorithm that is derived from the kernel of likelihood 
function and discards, by construction, many proposed 
values of parameters.  Other algorithms, such as the 
Gibbs sampler, can take the advantage of the known 
conditional distributions, making the sampling process 
faster.

Additionally, it is important to note that the pro-
posed M-at-length estimators are not conceptually 
limited to use a Bayesian estimation. Researchers 
can simulate the entire M-at-length structure just by 
knowing the dependence between parameters L∞ and 
K. This can be achieved by reviewing specialized litera-



López Quintero et al.: Incorporating uncertainty into a length-based estimator of natural-mortality 363

ture about the species under study and incorporating 
this information in the copula method. In addition, the 
method proposed is not limited to the use of Charnov 
et al. (2013) estimator as the underpinning model to 
relate M and growth parameters. A method for esti-
mating M addressing uncertainty and considering en-
vironmental factors such temperature (e.g., Hewitt and 
Hoenig, 2005) can also be used.

As pointed out in the introduction, M is a key pa-
rameter in modeling any animal population but, it is 
crucial for harvested fish populations. Natural mortal-
ity affects these populations concurrently and continu-
ously with fishing mortality to yield the total mortality 
rate, which determines the decay in the abundance of 
a population over time and therefore the size of the 
stock. Estimation of M within stock assessment mod-
els is difficult, and resultant estimates are usually im-
precise (Vetter, 1988; Gavaris and Ianelli, 2002). Stan-
dard practice is therefore to use a constant value for 
M across sizes or ages—a value that is derived from 
indirect methods when fitting a population model. Most 
of the current stock assessment models are age or size 
based, and therefore the incorporation of an age or size 
constant value for M is misleading and may introduce 
a critical source of bias in abundance estimates. Recent 
stock assessment models recognize the importance of 
incorporating size-dependent mortality, and thus incor-
porating uncertainty in size-based models has become 
highly recommended (e.g., Clark, 1999; Fu and Quinn, 
2000; Siegfried and Sansó1; Gislason et al., 2010; Lee 
and Chang3). We agree with Quiroz et al. (2010) in 
the sense that uncertainty, as reported here for size-
based M estimates, can then be integrated into stock 
assessment models and used for management analysis 
through methods such as: 1) sensitivity analysis, where 
an assessment is conducted repeatedly for several val-
ues of size-based M (see McAllister et al., 1994; Pat-
terson, 1999) drawn from the empirical distributions 
using copula methods; 2) Bayesian framework, by set-
ting the empirical distributions as prior distributions 
of size-based M; and 3) state-space models, where un-
certainty in M is incorporated as one of the random 
components regulating the stochasticity in the popula-
tion dynamics (i.e. the model process error; see Millar 
and Meyer, 2000).
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