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Abstract—The von Bertalanffy 
growth function is the model most 
widely applied to describe growth 
in fish populations. Parameters de-
scribing this function usually are 
estimated from observed lengths at 
different ages by using maximum 
likelihood and by assuming Gauss-
ian distributed errors. In harvested 
populations, observed length at age 
usually involves a high level of 
skewness and extreme values be-
cause of the size-selective sampling 
process. Some approaches, based on 
the maximum-likelihood method for 
making inferences, have been devel-
oped to resolve such issues. We pro-
pose a Bayesian framework for esti-
mating growth parameters for non-
linear regression models—a frame-
work that is based on the family of 
log-skew-t distributions and which 
provides an approach that is flexible 
enough for modeling the presence of 
asymmetries and heavy tails. This 
framework based on a method in 
which 1) the error accounts for both 
skewness and heavy-tailed distribu-
tions of a log-skew-t model, and 2) 
the observed length at each age has 
a heteroscedastic error distribution. 
The proposed method was applied 
and compared with the methods of 
previous models by using observed 
length-at-age data for the southern 
blue whiting (Micromesistius austra-
lis), an important fish species har-
vested in the southeast Pacific. Com-
parisons indicated that the proposed 
model is the best for describing data 
on southern blue whiting.

Growth is one of the most impor-
tant measurable life-history traits 
in individual organisms because it 
is fundamental in creating an un-
derstanding of both population and 
ecosystem functions. Several models 
have been proposed to describe ani-
mal growth. The most widely applied 
model, however, is the von Berta-
lanffy growth function (VBGF; von 
Bertalanffy, 1938). This model has 
been used to describe length at age 
for a wide range of species across 
several taxa, such as mammals (Eng-
lish et al., 2012), birds (Tjørve and 
Tjørve, 2010), and reptiles (Lehman 
and Woodward, 2008), although it is 
most extensively applied to fish spe-
cies (Pardo et al., 2013). The VBGF 
is based on principles underpinning 
the physiology of growth (von Ber-
talanffy, 1938; Wiff and Roa-Ureta, 
2008), gives an adequate description 
of growth with the use of only 3 pa-
rameters, and states that the rate 
of growth of an individual is deter-
mined by the difference between the 
buildup of body mass and loss due 
to energy expenditures for mainte-

nance. In harvested fish populations, 
the usual data available to estimate 
these parameters are cross-sectional, 
and a single length and age measure-
ment is taken from each sampled 
individual. The VBGF describes the 
expected growth rate for the popu-
lation, on the basis of length-at-age 
data composed of individuals with 
variable growth rates.

Maximum-likelihood techniques 
derived from Gaussian and log-
Gaussian errors normally are used 
to estimate VBGF parameters (Mil-
lar, 2002; Siegfried and Sansó, 2006). 
Yet, in fish populations, this assump-
tion often fails because these distri-
butions are typically skewed, present 
heavy tails or have extreme values. 
Skewed distributions usually result 
from the size-selective sampling pro-
cess (Montenegro and Branco, 2016). 
In addition, in harvested fish popu-
lations, an accumulative effect of 
fishing exploitation exists for size at 
age. Growth rates vary among indi-
viduals (Sainsbury, 1980), and fish-
ing selectivity removes faster grow-
ing individuals from each particular 
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age class. Hence, the bias in sampling for length at 
age that favors fast-growing individuals of each age 
class (Taylor et al., 2005). Therefore, the assumption 
of Gaussianity to estimate parameters of the VBGF 
is not adequate (Contreras-Reyes and Arellano-Valle, 
2013; Montenegro and Branco, 2016). Moreover, the as-
sumption of Gaussianity implies that length may take 
negative values and, therefore, is nonsensical (Xiao, 
1994; Millar, 2002).

Different approaches have been proposed to over-
come this drawback and fitting the VBGF. They can 
be separated roughly into 2 categories. In the first one, 
models, such as the one in Taylor et al. (2005), pro-
vide a mechanistic approach to dealing with skewed 
length-at-age data, with a combined process of growth, 
selectivity, and mortality when fitting the VBGF. The 
second category is a more empirical approach in which 
skewed and heavy-tailed length-at-age data are mod-
eled by using the maximum-likelihood method and as-
suming a non-Gaussian distribution (Contreras-Reyes 
and Arellano-Valle, 2013) and by using Bayesian anal-
ysis (Millar, 2002; Siegfried and Sansó, 2006). Millar 
(2002) proposed a Bayesian framework to estimate 
parameters of the VBGF, using a multiplicative error 
model with log-normal distribution. Contreras-Reyes 
and Arellano-Valle (2013) calculated the maximum-
likelihood estimates for the VBGF with the family of 
skew- distributions (Azzalini and Capitanio, 2003), a 
flexible class that extends the known Student distri-
bution (e.g., Geweke, 1993). Such models can incorpo-
rate asymmetric and heavy-tailed errors, with presence 
of heteroscedasticity (Montenegro and Branco, 2016). 
Contreras-Reyes et al. (2014) reanalyzed the skew- ap-
proach to incorporate a log-skew-t distribution under 
multiplicative error distribution.

In this study, we examined our proposed Bayesian 
method for estimating the VBGF parameters on the 
basis of a log-skew-t distribution. This new framework 
merges the benefits provided by Bayesian analysis (Sieg-
fried and Sansó, 2006) and the log-skew-t distribution 
(Contreras-Reyes et al., 2014) for estimating parameters 
of the VBGF for harvested fish populations. Addition-
ally, our approach allows for heteroscedasticity in errors, 
modeled as power and exponential functions (Contreras-
Reyes and Arellano-Valle, 2013). This Bayesian frame-
work is applied to data of length-at-age composition of 
southern blue whiting (Micromesistius australis), an 
important species fished in the southeast Pacific.

Materials and methods

Log-skew-t von Bertalanffy growth model

We let L(xi) be the expected value of the length related 
to an th individual at age xi, L∞ > 0, K > 0, t0 < min{x1, 
… xn}, and n is the sample size. The VBGF defines 
growth in length as

 L(xi )= L∞(1−e−K (xi−t0 )).  (1)

Equation 1 represents the simplest formulation of the 
VBGF, described by 3 parameters:

where L∞  = the asymptotic length (in length units,e.g., 
centimeters);

 K = the growth rate coefficient expressed per 
unit of time; and

 t0 = the theoretical age (usually in years) when 
the length is zero.

Parameters of the VBGF usually are estimated from 
observed length-at-age pairs, such as (xi, yi), i = 1, …, n, 
where yi is the ith observed length at age xi. Equation 
1 was described in terms of multiplicative structure 
(Millar, 2002; Siegfried and Sansó, 2006; Contreras-
Reyes et al., 2014) for random errors:

 yi = L(xi)ei, (2)

where ei = non-negative random errors, usually as-
sumed to be independent, identically distributed errors 
with a mean of 1. Given this assumption, the VBGF 
in Equation 2 corresponds to the nonlinear regression 
with multiplicative random errors. We easily recovered 
the additive structure of the original model in Equa-
tion 2 by applying log scale in the following way:

′yi = ′L (xi )+ ′εi , with log ′yi , ′L (xi )= log Li = ′Li , and

 ′εi = log εi , i=1,…, n,  (3)

in which ′εi  were assumed to be independent, identi-
cally distributed, random errors with zero mean.

Contreras-Reyes et al. (2014) assumed a log-skew-t 
distribution (Azzalini et al., 2003) for the multiplica-
tive and heteroscedastic random errors. Specifically, 
they assumed that the multiplicative errors ei, i = 1, 
…, n, were independent random variables following a 
log-skew-t distribution with parameters µi ∈  (loca-
tion), σi

2 >0 (scale and dispersion), λi ∈  (skewness 
and shape), and n > 0 (degrees of freedom), a distribu-
tion that is denoted by

 ′εi  LST(µi ,σi
2,λ,n ), i=1,…, n.  (4)

This approach is equivalent to considering that the 
transformed errors ei, i = 1, …, n, are independent and 
have a skew distribution (Branco and Dey, 2001; Az-
zalini and Capitanio, 2003) denoted by

 ′εi  ST(µi ,σi
2,λ,n ), i=1,…, n.  (5)

In turn, this notation indicates that the transformed 
response variables (lengths) are derived from 

 ′yi  ST(µi + ′Li ,σi
2,λ,n ), i=1,…, n.  (6)

namely, that the density of ′yi  is given by

 f ( ′yi|xi ,µi ,σi
2,λ,n )= 2

σi
t(zi ;n )T λzi

n+1
n+zi

2 ;n +1( ),
′yi ∈,

 
(7)

where

zi = ( ′yi−µi− ′Li ) / σi is a standardized version of ′yi ,



López Quintero et al.: Bayesian analysis of the von Bertalanffy growth function  15

 
t(z;n )=

G n +1
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

G(n / 2) (πn )
1
2

1+
z2

n

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

−
n+1

2
,
 

(8)

z ∈  is the symmetric Student-t density with v de-
grees of freedom, and T(z;n) represents the respec-
tive cumulative distribution function. In other words, 
we assumed that the original response yi followed a 
log-skew-t distribution (Marchenko and Genton, 2010), 
which is denoted by 

 yi  LST(µi + Li,σi
2,λ,n ), i=1,…, n.  (9)

We assumed that n > 1 and considered the first mo-
ment of the skew-t distribution (Branco and Dey, 2001); 
therefore, the extra parameter µi had tobe chosen as

 µi = n
π

G[(n−1)/2]
G(n /2)

λσi

1+λ2
,  (10)

so that the transformed errors ′εi have a zero mean. 
This condition ensured that E( ′yi )= ′Li  and allowed us 
to identify the constant in the additive version of the 
regression model.

Heteroscedasticity was introduced by means of the 
dispersion parameters σi

2 and modeled by using a non-
negative function m(r; xi) depending on age xi and a 
heteroscedastic parameter r ∈  as σi

2 = σ2m(ρ; xi ),  
where s2 > 0. When r = 0, homoscedasticity is recov-
ered as σi

2 = σ2m(0; xi )= σ
2.  In our study, we considered 

2 specific functions for modeling heteroscedasticity: the 
exponential function m(ρ; xi )= eρxi  and the power func-
tion m(ρ; xi )= xi

2ρ.  In both functions, if m(0; xi) = 1, it 
corresponds to the homoscedastic case.

Asymmetry and heavy tails produced by extreme 
values of length-at-age data were controlled by the pa-
rameters of shape (l) and degrees of freedom (n).

Extension to a Bayesian framework

We advanced a Bayesian analysis for the log-skew-
t VBGF described in the previous section. Therefore, 
we first noted from the independence assumption and 
Equation 7 that the likelihood function of the unknown 
parameter vector θ= (βT,σ2,ρ,λ,n )T  is

 f ( ′y |x,θ)= 2
σi
( )t(zi ;n )T λzi

n+1
n+zi

3 ;n +1( )i=1
n∏ ,  (11)

where β = (L∞, K ,T0)T are VBGF parameters, ′y = ( ′y1,…, ′yn)T ,  
′y = ( ′y1,…, ′yn)T , x= (x1,…, xn)T ,  and zi is as it was previously 

defined. To complete our Bayesian model specification, 
we needed to elicit a prior distribution for the unknown 
parameter vector, say p(q). Therefore, the Bayesian in-
ference on q (or function of q) was based on the posteri-
or distribution p(q |x, y′) ∝ f(y′ | x, q)p(q). This posterior 
distribution does not have a closed form (Cancho et al., 
2011), but an estimation could still be calculated by 
using a Markov chain Monte Carlo (MCMC) algorithm 
(Chib and Greenberg, 1995; Cowles and Carlin, 1996; 
Robert and Casella, 2004). 

Given the available methods, we chose to implement 
a hand-tailored component-wise Metropolis–Hasting 

transition scheme; in other words, we selected an ap-
proach in which q is divided into individual pieces that 
are easily updated sequentially with a random walk 
algorithm. Our selection was based on simplicity and 
the need to control all steps in the sampling. Other 
options included the use of variants of BUGS language 
(Lunn et al., 2012), the AD ModelBuilder (Fournier et 
al., 2012), or Stan software (Gelman et al., 2015). Note 
that our selected approach is different from that fol-
lowed by Siegfried and Sansó (2006), who employed an 
algorithm that included both Gibbs, as well as Metrop-
olis–Hasting steps. An advantage of using this MCMC 
scheme is that the procedure is subdivided into several 
univariate steps. All proposal distributions were tuned 
to achieve acceptance rates of 25–45% (Robert and Ca-
sella, 2004). Specifically, we considered the different 
components of as independent (Siegfried and Sansó, 
2006); in other words, p(q) becomes the product of the 
marginal prior distributions of (βT,σ2,ρ,λ,n ).  It follows 
that only these marginal prior distributions must be 
elicited to complete our Bayesian model.

Prior distributions for the VBGF parameters b were 
chosen as follows. Given that L∞ is strictly positive, we 
assumed a left truncated normal distribution with large 
variance (e.g., 100) as the prior distribution for this pa-
rameter. Other possible and natural choices were log-
normal, gamma, or even distributions with support in 
a reasonable and restricted interval. Because param-
eters K and –t0 are both positive, we used gamma as 
prior distributions for them (Xiao, 1994; Siegfried and 
Sansó, 2006). Contreras-Reyes et al. (2014) reported  
estimates of around 0.16 for southern blue whiting, a 
value that incidentally conforms to the value obtained 
by Siegfried and Sansó (2006) for blue shark (Prionace 
glauca). We used this information to specify that the 
mean of the gamma prior distribution of was around 
0.15. For –t0, Contreras-Reyes et al. (2014) obtained 
–t [0 = 2.5,, which indicates a  prior distribution for this 
parameter. 

For the scale parameter s2, we considered the clas-
sical inverse gamma prior distribution suitable for 
this type of parameter (Zhang et al., 2009). The het-
eroscedastic parameter r usually takes positive or 
negative values. To give the full power of estimation 
to the data, we chose a noninformative prior, p(r) ∝ 
1. For the shape parameter l, we set a normal prior 
distribution with a zero mean and large variance. The 
parameter defining the degrees of freedom, v, should 
be strictly larger than 2 to ensure the existence of vari-
ance in the log-skew-t model; therefore, we considered 
an exponential prior distribution with mean equaling 
2 (Geweke, 1993; Cancho et al., 2011) and truncated at 
the interval (2, ∞).These prior specifications are sum-
marized in Table 1.

Comparisons and selection of models

For sake of comparison, we considered 2 additional 
models with constant variance function derived from 
the log-normal distribution. The first one (hereafter, re-
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ferred to as type-I model) was similar to that developed 
by Siegfried and Sansó (2006), and the second one in-
cluded a modification of the prior distribution of L∞ so 
that it was the same as that proposed in the log-skew-t 
model. All these prior specifications are summarized in 
Table 1. The following models were considered:

• Log-normal (type I) with constant variance function;
• Log-normal (type II) with constant variance function;
• Log-skew-t with constant variance function;
• Log-skew-t with exponential variance function;
• Log-skew-t with power variance function.

Selecting the “best” model is an important aspect in 
statistical analysis. In the rest of this section, we de-
scribe how we implemented the deviance information 
criterion (DIC) and the widely applicable information 
criterion (WAIC) for model selection.

Deviance information criterion The DIC proposed by 
Spiegelhalter et al. (2002) is based on the posterior 
mean of the deviance, and it can be approximated by 
the MCMC algorithm as follows:

 DIC = 2 i=1
n∑ log f ( ′yi|xi ,θ )− 4

B log f ( ′yi|xi ,θs)
s=1

B
∑

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟,  (12)

where θ = 1
B s=1

B∑ θs  is the mean of a sample θ1,…,θB 
obtained from the posterior distribution π(θ|δ). 
The DIC is related to the effective number of para- 
meters:

 p̂DIC = 2 log f ( ′y |x,θ )− 1
B log f ( ′y |x,θs)

s=1

B
∑

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟.  (13)

The widely applicable information criterion The WAIC 
(e.g., Gelman et al., 2014) is based on the computed 
log-pointwise-posterior-predictive density, complement-
ed by a correction for the effective number of para-
meters to adjust for overfitting:

 
WAIC = logi=1

n∑ 1
B log f ( ′yi|xi ,θs)

s=1

B
∑

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟− p̂WAIC.

 
(14)

Also, the WAIC is related to the effective number of 
parameters:

 

p̂WAIC =

2 log 1
B log f ( ′yi|xi ,θs)

s=1

B
∑

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟−

1
B log f ( ′yi|xi ,θs)

s=1

B
∑

⎛

⎝
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⎞

⎠
⎟⎟⎟⎟i=1

n∑ .
 
(15)

Compared with DIC, WAIC has the property of averag-
ing over the posterior density by using each iterated qs, 
instead of being replaced by the mean q \. In addition, 
p [WAIC is more numerically stable than p [DIC because it 
averages separately for each observation ′yi  (Gelman 
et al., 2014).

Influential analysis

The statistical stability of the proposed models exposed 
to perturbations of the data were analyzed by using in-
fluential analysis. We considered the Kullback–Leibler 
(KL) divergence measure (Kullback and Leibler, 1951) 
to quantify the effect on the inferences produced by 
excluding one observation or a group of observations 
from the full data set. The KL-divergence had been 
considered previously in Bayesian influential analysis 
for elliptical and skew-elliptical models (Arellano-Valle 
et al., 2000; Vidal et al., 2006).

We let P= π(θ|S) and P−i = π(θ|S−i ) be the posterior 
distribution of q obtained from the full data S = (x, y′)  
and the data without the ith observation S–i = (x–i, y′–i), 
respectively. The KL-divergence between P and P–i was 
given by

 K (P, P−i )= π(θ|S) log π(θ|S)
π(θ|S−i ){ }dθ.∫  (16)

To identify influential observations, Peng and Dey 
(1995) showed that if pi >> 1/2, where

 pi = 1
2 (1+ 1− e−2K (P,P−i ) , 1

2 ≤ pi ≤1,  (17)

Table 1

Elicited prior specifications for log-normal and log-skew-t models used to examine a 
Bayesian analysis of the von Bertalanffy growth function. TN(0,∞)(0,100) represents the 
N(0,100)-density truncated at (0,∞), and TE(2,∞)(0.5) denotes the exponential density trun-
cated at the (2,∞) interval. The parameters are the asymptotic length (L∞), growth rate 
coefficient (K), theoretical age in years when the length is zero (–t0), heteroscedasticity 
(r), inverted dispersion (s–2), skewness (l), and degrees of freedom (n).

Parameter Log-normal (type I) Log-normal (type II) Log-skew-t

 L∞ (cm) p(L∞)  ∝ 1 TN(0,∞)(0,100) TN(0,∞)(0,100)
 K(y−1) Gamma(15,100) Gamma(15,100) Gamma(15,100)
 –t0(y) Gamma(10,4) Gamma(10,4) Gamma(10,4)
 r – – p(r)  ∝ 1
 s–2 Gamma(0.1,0.1) Gamma(0.1,0.1) Gamma(0.1,0.1)
 l – – N(15,100)
 n – – TE(2,∞)(0.5)
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then the ith observation is considered influential. Ad-
ditionally, because the integral in Equation 16 cannot 
be written in closed form, it still can be approximated 
by sampling from the posterior distribution of q via the 
MCMC algorithm. In fact, if q1,…,qB is a sample of size 
B from π(θ|S), then the MCMC estimator of K(P,P–i) 
is computed as

 

K̂ (P, P–i )=

log 1
B

1
f ( ′yi|x,θs)s=1

B
∑

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪
+ 1

B log f ( ′yi|x,θs),s=1
B∑

 

(18)

with f ( ′yi|x,θs) given by Equation7 and qs = 
(βs,σs

2,ρs,λs,vs)T (e.g., Cancho et al., 2011). It should 
be noted that we computed the KL-divergence be-
tween P and P–i using the ith marginal sample density 
f ( ′yi|x,θs), but we did so without considering the pos-
teriors π(θ|S), and π(θ|S–i ).

In addition, given the new sample with removed 
observations, we quantified the change produced for 
each new estimate with respect to the full sample. In 
several cases, the estimates were notably different for 
these samples (Contreras-Reyes and Arellano-Valle, 
2013). We used restricted data S–J in which a set of 
J observations was removed. Then, we computed the 
percentage of relative change (RC) of estimates by fol-
lowing Contreras-Reyes and Arellano-Valle (2013).  The 
RC was defined by

 RC(θ̂k, θ̂k, J )=100 1−
θ̂k, J
θ̂k

,  (19)

where q [k,J and q [k are the posterior median estimates of 
kth component of q obtained from the posterior distri-
butions π(θ̂|S– J ) and π(θ̂|S ), respectively. Therefore, 
we computed the change (in percentage) of each para-
meter of the VBGF.

Application

Data We evaluated the performance of the proposed 
model, using the available data for southern blue 
whiting. This dataset was based on 24,942 individuals 
collected from a region spanning latitudes from 46°S 
to 6°S over the period 1997–2010 by the Instituto de 
Fomento Pesquero (Contreras-Reyes, unpubl. data). 
Random samples of fish were collected by onboard sci-
entific observers during each catch haul of southern 
blue whiting were caught. All these fish were mea-
sured to the nearest centimeter, and both otoliths of 
each fish were extracted onboard. Otoliths were then 
taken to the laboratory, where age was determined 
by reading annual growth increments in the sagit-
tal otoliths. The southern blue whiting is assumed 
to recruit once a year; therefore, age is treated as a 
discrete variable with a 1-year interval. Otolith age 
assignment involved killing sampled fish; therefore, 
each data point represents 1 individual fish. Fish in 
the catch had observed ages between 1 and 25 years 
and a size range of 20–75 cm in total length (Cés-

pedes et al., 2013). Contreras-Reyes et al. (2014) re-
ported extreme values in young and old age classes 
and reported asymmetry caused by fishing selectivity. 
Both these issues justify the use of heavy-tailed and 
skewed distributions in VBGF errors.

MCMC sampling For inference, 4 chains were se-
lected from each applied Bayesian model. The length 
of the chains necessary to reach convergence dif-
fered depending on the treated model: it was around 
20,000 iterations for all log-skew-t  models and 
around 100,000 iterations for the log-normal ho-
moscedastic model. We considered a burn-in period 
to be 10,000 iterations for the first model and 20,000 
for the log-normal homoscedastic model. In addition, 
all models conformed with the traditional diagnostic 
convergence tests, such as Geweke and Heidelberger–
Welch, when tests were applied to individual chains 
(Cowles and Carlin, 1996; Carlin and Louis, 2000). 
However, results of the Raftery–Lewis test, also ap-
plied to individual chains, indicated that we should 
take the largest thinning of chains (Link and Eaton, 
2011) because values were highly correlated. In ad-
dition, visual examination throughout trace and au-
tocorrelation plots (not shown) indicated that conver-
gence was reached for all parameters in all models. 
This situation was transferred to the effective sample 
size, which can be interpreted as the number of in-
dependent samples necessary to yield the same pre-
cision as the (serially dependent) MCMC samples. 
Effective sample size is especially important in re-
sampling and should not be confused with the de-
gree of over dispersionusually found in length-at-age 
compositions.

For all models, the parameters with higher and low-
er values of effective sample size were v and K, respec-
tively. Finally, R [ Gelman’s indexes (Gelman and Rubin, 
1992) were all near 1, indicating that the specific pa-
rameter had good convergence after the burn-in period 
was eliminated. This test was applied to 4 chains for 
each parameter and each model.

Software Statistical methods used in this article were 
implemented in the software R, vers. 3.1.0 or higher 
(R Core Team, 2014). The MCMC was developed in 
C++ embedded in the R package RcppArmadillo, vers. 
0.4.300.0 or higher (Eddelbuettel and Sanderson, 2014). 
Diagnostic analysis was conducted with the coda pack-
age, vers. 0.16-1 or higher, in R (Plummer et al., 2006). 
Von Bertalanffy growth curves were estimated in each 
realization by simulating estimated parameters several 
times (e.g., 10,000) with the models proposed previous-
ly in the Comparisons and selection of models section. 
Such simulated observations are called fake data, ac-
cording to Gelman and Hill (2007, Ch. 16). Afterward, 
the 95% highest posterior density (HPD) was computed 
across ages. The generation of the log-skew-t values 
was conducted by using fake data in the R package sn, 
vers. 0.4-11 (Azzalini, 2008).



18 Fishery Bulletin 115(1)

Results

Simulations

To assess the effect of error distribution in the VBGF 
parameters, length-at-age data were simulated from a 
log-skew-t distribution with a constant variance and 
the estimated growth parameters of Contreras-Reyes et 
al. (2014) (see the Comparisons and selection of models 
section). Different cases were evaluated by considering 
a range for l and n in the set of {–3,–1,0}{3,12,100} 
(Table 2). This procedure permits assessment of the 
closeness of estimates in absence and presence of skew-
ness and heavy-tailed simulated data. Each simulation 
considered 30,000 realizations. For l = –3, estimates of 
L∞ indicated the largest differences with real values, 

and the smaller differences were reported in K and –t0. 
The largest differences of n for estimated and simu-
lated data were produced for n = 100 (which approxi-
mates the log-skew-normal distribution) and for l = 0 
(which approximates the log-normal distribution). The 
log-skew-t model presented estimates similar to the 
initial parameters l = –1 and n = 12.

Modeling data from southern blue whiting

In the case of the parameters of error distribution, the 
s2 posterior estimates are small values because of the 
application of the log-transformation, and the v poste-
rior estimates are smaller than 15, indicating the pres-
ence of extreme values (Table 3). In these models, the 
shape parameters l are close to –1, indicating a non-

Table 2

Values from models fitted to simulated length-at-age data after log-skew-t distribution with constant variance, with asymp-
totic length (L∞) = 59.72, growth rate coefficient (K) = 0.16, theoretical age in years when the length is zero (–t0) = 2.5, 
heteroscedasticity(r) = –0.5, and dispersion (s2) = 0.05 considered by ranging the parameters of skewness (l) and degrees 
of freedom (n) in the set {–3, –1,0}{3,12,100}.

 (l,n)

Model Parameter (−3,3) (−3,12) (−3,100) (−1,3) (−1,12) (−1,100) (0,3) (0,12) (0,100)

Log-normal (type I)      
 Constant L∞ 56.789 57.568 57.458 57.519 57.790 57.923 59.717 59.665 59.653
 K 0.158 0.157 0.160 0.155 0.161 0.163 0.161 0.164 0.164
 −t0 2.603 2.541 2.530 2.652 2.491 2.427 2.430 2.381 2.354
 s2 0.004 0.002 0.001 0.006 0.002 0.002 0.011 0.003 0.003
Log-normal (type II)      
 Constant L∞ 56.797 57.578 57.456 57.595 57.810 57.938 59.739 59.635 59.640
 K 0.157 0.157 0.160 0.154 0.161 0.163 0.160 0.164 0.164
 −t0 2.606 2.545 2.529 2.684 2.502 2.435 2.445 2.377 2.351
 s2 0.004 0.002 0.001 0.006 0.002 0.002 0.011 0.003 0.003
Log-skew-t          
 Constant L∞ 56.570 57.179 57.346 57.395 57.965 57.859 59.809 59.614 59.654
 K 0.160 0.161 0.161 0.160 0.159 0.163 0.153 0.163 0.163
 −t0 2.521 2.453 2.501 2.515 2.518 2.460 2.644 2.403 2.373
 s2 0.003 0.003 0.003 0.003 0.004 0.003 0.003 0.004 0.004
 l −3.842 −3.627 −3.266 −1.375 −1.683 −1.718 −0.472 −0.885 −1.224
 n 3.626 16.640 18.471 3.640 11.739 17.457 3.130 13.739 16.752
Log-skew-t          
 Exponential L∞ 56.886 57.651 57.520 57.645 57.801 58.059 59.993 59.624 59.700
 K 0.158 0.156 0.159 0.155 0.161 0.160 0.153 0.163 0.162
 −t0 2.490 2.510 2.491 2.590 2.473 2.490 2.640 2.403 2.372
 r −0.125 −0.121 −0.126 −0.107 −0.117 −0.144 −0.135 −0.069 −0.049
 s2 0.005 0.005 0.004 0.006 0.006 0.006 0.005 0.005 0.005
 l −3.517 −3.528 −2.917 −1.196 −1.713 −1.458 −0.249 −0.545 −1.126
 n 3.217 11.846 15.961 3.296 10.977 15.346 2.804 12.430 15.929
Log-skew-t          
 Power L∞ 56.929 57.645 57.495 57.691 57.829 58.049 59.951 59.610 59.705
 K 0.155 0.155 0.159 0.153 0.160 0.160 0.153 0.163 0.162
 −t0 2.570 2.553 2.512 2.635 2.503 2.487 2.647 2.403 2.382
 r −0.023 −0.021 −0.020 −0.021 −0.023 −0.025 −0.022 −0.007 −0.003
 s2 0.004 0.004 0.003 0.005 0.005 0.004 0.004 0.004 0.004
 l −3.702 −3.670 −3.075 −1.291 −1.778 −1.585 −0.342 −0.863 −1.198
 n 3.341 13.131 17.094 3.476 11.855 16.640 2.940 13.372 16.574
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symmetric length-at-age distribution. In addition, log-
normal models yielded very similar posterior estimates 
for VBGF and s2. Interestingly, standard errors for all 
parameters were very precise, in a similar way to that 
of previous studies of frequentist inference (Contreras-
Reyes and Arellano-Valle, 2013; Contreras-Reyes et al., 
2014). This level of precision probably is a result of a 
strong underlying structure of the data.

Using the DIC and WAIC criteria of Equations 12 
and 14, respectively, we found the log-skew-t model 
with power heteroscedastic function to be the best 
model (Table 4). As Table4 indicates, the log-normal 
model is the least useful among the selected models.

The fitted curve of the power-variance log-skew-t 
model to the observed length-at-age data is presented 
in Figure 1A. The model is adequate for younger ages 
(1–8 years), but for older ages (>15 years) the observed 
length tends to converge to L [

∞ = 59.52 (Table 3). The 

log-skew-t model provides more precise 95% HPD in-
tervals for older ages (>13 years; Fig. 1B) and less pre-
cise for young ages (0–5 years) in comparison with the 
log-normal model. Intervals of 95% HPD of log-skew-t 
model fit indicate that the observations were affected 
by the negative heteroscedastic parameter r [ (Fig. 1C). 
In addition, constant variance was assumed for the 
log-normal model and, therefore, the model underesti-
mated the real variance in the age at length containing 
extreme values. The posterior densities of VBGF and 
variance parameters corresponding with the homosce-
dastic log-normal and power-variance log-skew-t mod-
els are compared in Figure 2. The asymmetry and dis-
persion of the posterior densities of VBGF were similar 
for the different error distributions. However, for the 
variance parameter, the posterior density was leptokur-
tic when log-normal error distribution was used.

Considering the boxplots of residuals by age from 

Table 3

Estimates from fitted log-normal and log-skew-t models, with standard deviations (SDs) and 
95% highest posterior density (HPD) intervals. The parameters are the asymptotic length (L∞), 
growth rate coefficient (K), theoretical age in years when the length is zero (–t0), dispersion 
(s2), heteroscedasticity (r), skewness (l), and degrees of freedom (n).

Model Parameter Estimate SD 95% HPD

Log-normal (type I)
 Constant L∞ 59.249 0.091 (59.064, 59.439)
  K 0.167 0.001 (0.165, 0.170)
  –t0 2.323 0.035 (2.250, 2.396)
  s2 0.004 3×10−5 (0.0042, 0.0044) 
Log-normal (type II)
 Constant L∞ 59.249 0.090 (59.060, 59.425)
  K 0.167 0.001 (0.165, 0.170)
  –t0 2.323 0.034 (2.248, 2.391)
  s2 0.004 0.000 (0.0042, 0.0044)
Log-skew-t
 Constant L∞ 59.212 0.086 (59.055, 59.386)
  K 0.166 0.001 (0.164, 0.169)
  –t0 2.382 0.034 (2.322, 2.454)
  s2 0.005 1×10−4 (0.0047, 0.0053)
  l −1.012 0.051 (−1.105, −0.916)
  n 11.020 0.643 (9.853, 12.210)
Log-skew-t
 Exponential L∞ 59.666 0.085 (59.527, 59.815)
  K 0.161 0.001 (0.159, 0.163)
  –t0 2.488 0.036 (2.428, 2.549)
  r −0.039 0.002 (−0.043, −0.035)
  s2 0.008 2×10−4 (0.007, 0.008)
  l −1.080 0.050 (−1.181, −0.977)
  n 13.351 0.884 (11.757, 15.144)
Log-skew-t
 Power  L∞ 59.573 0.090 (59.386, 59.755)
  K 0.162 0.001 (0.159, 0.165)
  –t0 2.454 0.042 (2.367, 2.541)
  r −0.180 0.009 (−0.197, −0.161)
  s2 0.011 0.001 (0.010, 0.013)
  l −1.096 0.053 (−1.200, −0.997)
  n 14.322 1.047 (12.457, 16.586)
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the fitted log-skew-t model (Fig. 3), we can observe that 
residuals indicate a flat pattern and that their mean is 
concentrated around zero. We noted also a decreasing 
variance in older fish, produced in part by the negative 
value of the estimated heteroscedasticity (r [ = –0.18). 
Furthermore, extreme values for younger and older fish 
(<6 and >15 years) were detected by the estimated de-
gree of freedom (v [ =14.32; Table 3).

Influential analysis

Peng–Dey’s criterion (Eq. 17, pi = 0.5) is suitable for 
certain nonlinear regression models with normal er-
rors and many observations are considered influential 

(Fig. 4). As expected, we found that the log-normal 
model has more influential observations than the pow-
er log-skew-t model for each probability. Therefore, we 
selected, in Table 5, only the probabilities 0.70, 0.60, 
0.55, and 0.51 for those influential observations in log-
normal and power log-skew-t models. For the selected 
model, when pi = 0.51, the largest number of restricted 
observations was recorded and the RC of the error dis-
tribution parameters was raised. When the number of 
influential observations increased (in terms of the pi) 
and were removed, the degree of freedom parameter  
also increased. Because several of these observations 
are extreme values (Contreras-Reyes et al., 2014), the 
error distribution shifts from log-skew-t to log-skew-t 

Table 4

Summary of chain diagnostics for the fitted models: effective sample size (ESS), credibility R [ of Gelman index, Geweketest 
(G), Heidelberger–Welch test (HW), and Raftery–Lewis test (RL). In addition, the deviance information criterion (DIC) 
and widely applicable information criterion (WAIC) values for each model are reported, with their estimated number 
of parameters, pDIC and pWAIC, respectively. The parameters are the asymptotic length (L∞), growth rate coefficient (K), 
theoretical age in years when the length is zero (–t0), dispersion (s2), heteroscedasticity (r), skewness (l), and degrees 
of freedom (n).

Model Parameter ESS R [ G HW RL DIC pDIC WAIC pWAIC

Log-normal (type I)
 Constant L∞ 1134.673 1.002 1.543 0.817 39.4 −65275.66 4.338 −65275.66 7.079
 K 760.156 1.003 −1.241 0.850 82.6    
 −t 0 934.834 1.003 1.518 0.799 63.0    
 s2 52477.971 1.000 1.111 0.572 4.6    
Log-normal (type II)
 Constant L∞ 749.129 1.005 −1.891 0.226 32.4 −65275.659 4.338 −66623.850 8.181
 K 463.168 1.008 1.499 0.050 50.3    
 −t 0 569.197 1.008 −1.817 0.456 35.3    
 s2 29883.554 1.000 1.510 0.093 3.4    
Log-skew-t
 Constant L∞ 211.801 1.022 1.665 0.143 14.9 −66231.757 2.918 −66227.642 6.133
 K 81.302 1.037 −1.118 0.500 30.0    
 −t 0 91.705 1.041 1.230 0.393 60.5    
 s2 656.456 1.002 1.662 0.654 6.7    
 l 596.318 1.004 −1.598 0.638 13.3    
 n 1927.670 1.005 −1.232 0.408 5.1    
Log-skew-t
 Exponential L∞ 204.714 1.054 −1.174 0.436 8.2 −66559.569 6.420 −66556.535 9.048
 K 112.927 1.077 1.232 0.471 43.7    
 −t0 162.885 1.078 −1.696 0.264 16.9    
 r 561.808 1.013 −1.335 0.504 8.5    
 s2 179.131 1.029 1.015 0.673 116.0    
 l 1404.850 1.010 1.490 0.247 8.7    
 n 856.653 1.007 −0.771 0.159 10.9    
Log-skew-t
 Power L∞ 200.944 1.008 −1.293 0.087 7.7 −66625.510 6.482 −66623.850 8.181
 K 99.489 1.052 0.979 0.086 16.0    
 −t0 128.952 1.053 −1.223 0.052 16.9    
 r 706.436 1.008 −0.580 0.096 8.7    
 s2 189.195 1.029 0.631 0.615 23.6    
 l 1656.937 1.004 1.700 0.355 5.6    
 n 289.711 1.016 −0.481 0.495 24.5    
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Figure 1
(A) Observations of length-at-age composition for southern blue whiting (Micromesistius australis) collected from a region 
spanning latitudes 46°S to 56°S over the period 1997–2010 (gray shaded areas), with von Bertalanffy growth function 
(VBGF) fits: the solid black line corresponds to the fit of the log-skew-model with a heteroscedastic power variance function 
(Table 3). Black points correspond to the log-normal model fit with constant (homoscedastic) variance function (Table 3). 
Gray dotted lines and points correspond to the 95% highest posterior density intervals for log-skew-t and log-normal model 
fits, respectively. (B) The log-skew-t model fit includes the respective zoom subplot for fish at ages 14–26. (C) Heteroscedas-
tic variance function ( σ̂i

2) for log-skew-t (solid line) and log-normal (points) model fits.

normal. Among the VBGF parameters, –t0 showed the 
largest RC variation, although RC values of the VBGF 
parameters were small given the absence of influential 
observations.

The relationship between the paucity of observa-
tions for young (1–5 years) and old (16–24 years) age 
classes and heteroscedastic variance can be interpreted 
from Table 5 for the cases when pi = 0.55 and 0.51 
as follows. For pi = 0.55, 67.5% and 17.5% of young 
and old individuals, respectively, were obtained for the 
sample from 40 influential observations. For pi = 0.51, 
35.4% and 23.0% of young and old individuals were 
obtained for the sample, respectively, from 3106 influ-
ential observations. When the estimates for s [2, n [, and 
r [, from the Log-skew-t von Bertalanffy growth model 
section, were considered, the heteroscedastic variance  
σi

2 decreased mainly when young and old individuals 
(extreme values) were excluded from the sample.

Correlation analysis

An important aspect in fisheries research related to 
VBGF analysis is the correlation between parameters 
(Pilling et al., 2002; Siegfried and Sansó, 2006; Shelton 
and Mangel, 2012). High correlation among the 3VBGF 
parameters is common in fish populations (Ratkowsky, 
1986; Pardo et al., 2013). Correlation between param-
eters was analyzed by using the scatter plots in Figure 
5. The highest correlation was found between K and –t0 
(–0.94), followed by the correlation between L∞ and K 
(–0.89) (Xiao, 1994; Pilling et al., 2002; Siegfried and 
Sansó, 2006) and by the correlation between L∞ and 

–t0 (0.71) (Ratkowsky, 1986; Pilling et al., 2002). Rat-
kowsky (1986) found that correlations between VBGF 
parameters may depend on the parameters that are 
used. Other choices of parameters should produce a low 
correlation between the VBGF parameters. However, in 
our model, the solution for K is affected by values of  
L∞  and –t0 under the classical VBGF parametrization.

The relationship between estimates of L∞ and K 
are similar to the ones found by Siegfried and San-
só (2006), but, in contrast to their results, we found 
a large correlation between (K, –t0) and (L∞, –t0). This 
finding could have occurred for different reasons, such 
as the species studied and the specific Bayesian meth-
od employed. However, the use of maximum-likelihood 
estimation (not shown) also verified high correlations 
between those parameters. The scatter plots did not 
show a clear correlation for error distribution parame-
ters, except for the relationship between s2 and r given 
by the heteroscedastic power function, where the cor-
relation was −0.82.

Discussion

In this study, we embedded previous log-skew-t distribu-
tion analyses in a Bayesian framework. This approach, 
namely using log-skew-t distribution, has several ad-
vantages over previous frequentist inference. First, in 
a Bayesian framework, prior knowledge of the model 
parameters can be included in the modeling process in 
terms of a prior distribution, and our inferences were 
based on the posterior distribution, therefore, allowing 
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Figure 2
Posterior densities for estimates of 3 von Bertalanffy growth function (VBGF) pa-
rameters, (A) asymptotic length (L∞), (B) growth rate coefficient (K), (C) theoreti-
cal age in years when the length is zero (−t0), and (D) dispersion (s2) estimates of 
from the log-skew-t model with power heteroscedastic variance (solid line) and the 
homoscedastic log-normal model (dotted line).
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for probability statements for our statistical conclu-
sions. Second, the degrees of freedom parameter v is 
directly estimated from the posterior density, whereas, 
in the frequentist approach used by Contreras-Reyes 
and Arellano-Valle (2013) and Contreras-Reyes et al. 
(2014), they are obtained manually by using profiles 
of the log-likelihood function. Thirdly, an additional 
parameter l is also considered by the log-skew-t ap-
proach, allowing us to model different degrees of skew-
ness in data—something that the traditional log-nor-
mal model does not make possible. Finally, boundary 
restrictions on each prior density can be incorporated 
in Bayesian analysis, and avoids deriving nonsensical 
parameters of the VBGF (Gasbarra et al., 2007).

Contreras-Reyes et al. (2014) computed the VBGF 
for both sexes in southern blue whiting using the 
maximum-likelihood method and a heteroscedastic log-
skew-t model. Estimates reported in Contreras-Reyes 
et al. (2014) are similar to those reported here for 
southern blue whiting, except for the heteroscedastic 
parameter r. In this study, r [ was significantly higher 
than the one reported in Contreras-Reyes et al. (2014) 
because a prior distribution was specified for the het-
eroscedastic parameter. This specification allows us to 
model the decreasing variance of lengths better across 
ages, given the paucity of observations in young (1–5 
years) and older (16–24 years) fish (Fig. 1C). An ad-
equate modeling of variance, especially in young ages, 
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Figure 3
Boxplots of residuals versus ages of southern 
blue whiting (Micromesistius australis) from 
the log-skew-t model with power heteroscedastic 
function. The dark black lines correspond to the 
observed median, the gray shaded boxes repre-
sent the observed interval from the 25% residual 
quartile to the 75% residual quartile, the error 
bars are the observed interval from minimum to 
maximum residual value, and the dots are atypi-
cal residual values.
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Table 5

Summary of the log-skew-t model fitted with power heteroscedastic variance function for the full and restricted data and its 
respective percentage of relative change (RC) for the probabilities (pi), of 0.70, 0.60, 0.55 and 0.51. The parameters are the 
asymptotic length (L∞), growth rate coefficient (K), theoretical age in years when the length is zero (−t0), heteroscedastic-
ity (r), dispersion (s2), skewness (l), degrees of freedom (n), sample size (n), and number of influential observations (Influ. 
observ.).

Restricted data (S–1)

Parameters pi = 0.70 RC (%) pi = 0.60 RC (%) pi = 0.55 RC (%) pi = 0.51 RC (%)

 L∞ (cm) 59.559 0.024 59.550 0.039 59.445 0.215 59.588 0.025
 K (y−1) 0.163 0.617 0.163 0.617 0.164 1.235 0.161 0.617
 −t 0 (y) 2.446 0.326 2.455 0.041 2.391 2.567 2.501 1.915
 r −0.179 0.556 −0.180 0.000 −0.168 6.667 −0.141 21.667
 s2 0.012 9.091 0.013 18.182 0.012 9.091 0.008 27.273
 l −1.181 7.755 −1.231 12.318 −1.305 19.069 −1.801 64.325
 n 19.198 34.046 22.304 55.732 30.223 111.025 80.796 464.139
 n 24936  24932  24902  21836 
Influ. observ.  6  10  40  3106

will improve the estimation of t0. In addition, consider-
ing the influential analysis, the estimated parameters 
from the restricted data indicate significant differences 
with those obtained with the full data set, particularly 
for the degree of freedom parameter of the error dis-
tribution. However, numerous subjects were not evalu-
ated in this article—topics such as other sources of un-
certainly or data-related problems that can lead to bias 
in an estimation (Ortiz and Palmer1). Particularly, we 
did not address the direct influence of the prior specifi-
cation on the final estimates (Fig. 5C), a topic that will 
be of interest for future research.

Siegfried and Sansó (2006) and Hamel (2015) con-
sidered log-normal distributions to be appropriate for 
the asymmetry observed in the length-at-age data in 
harvested fish populations. However, in such data, we 
can usually find different degrees of skewness and 
heavy-tailed and extreme values in which log-normal 
distribution does not give a good description of obser-
vations. The log-normal model may underestimate the 
real variance contained in the data (Slatkin, 2013). In 
such cases, log-skew-t models (such as the one proposed 
here), could yield a fair description of the observed 
length-at-age data, as was the case for the southern 
blue whiting, in which the log-skew-t model turned out 
to be the best among all competing models. In addition, 
the proposed model gives great flexibility in modelling 
heteroscedasticity by adding a function dependent on 
the scale of s2 and a heteroscedastic parameter r. The 
assumption of asymmetry and heavy tails and the log-
transformed nature of the log-skew-t model reduces 
the standard errors of the estimated parameters of the 
VBGF (Contreras-Reyes et al., 2014).

1 Ortiz, M., and C. Palmer. 2008. Review and estimates of 
von Bertalanffy growth curves for king mackerel Atlantic 
and Gulf of Mexico stock units. SEDAR16-DW-12, 20 p. 
[Available at website.]

The Bayesian analysis that we developed and de-
scribe in this article provides a flexible framework that 
allows biologically meaningful estimates of the VBGF. 
This method also takes into account the uncertainty 
and kurtosis produced by extreme values common in 

http://sedarweb.org/docs/wpapers/S16_DW_12.pdf
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Figure 4
Probabilities (pi) derived according to Kullback-Leibler divergence criteria for the (A) 
log-normal and (B) power log-skew-t models. The dotted lines are the probabilities of 
0.51, 0.55, 0.60, and 0.70.
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length-at-age data (Quiroz et al., 2010; Montenegro 
and Branco, 2016). This framework is particularly rel-
evant when dealing with harvested fish populations for 
which length-at-age data collected from fishing opera-
tions usually contain missing observations and indicate 
bias toward fast-growing individuals of each age class. 
A correct specification of the VBGF is critical because 
growth is an important aspect of contemporary stock 
assessment models (Zhu et al., 2016) upon which bio-
mass estimates and conservation measures are based.
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