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Characteristically, the observed dis- eters (see, e.g. Pennington, 1983;
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Lo et aI., 1992; McConnaughey and
Conquest, 1992; Conquest et aI.,
1996; Stefansson, in press). For ma
rine data, the distribution of the
nonzero values is often well approxi
mated by a lognormal distribution
(e.g. Pennington, 1983; Smith, 1988;
McConnaughey and Conquest,
1992; Conquest et aI., 1996). Myers
and Pepin (1990 I found that of the
69 marine data sets they examined,
only 5 differed significantly from the
lognormal distribution. Thus the
lognormal model has been used as
a basis for developing survey abun
dance estimators (e.g. Pennington,
1983,1986; Lo et aI., 1992; McCon
naughey and Conquest, 1992) and
for estimating commercial catch
(Conquest et aI., 1996l.

It is not surprising that marine
abundance data often appear to fol
low a lognormal distribution. The
factors that determine abundance
over a region seem to have a multi
plicative effect. When this is the
case, survey data will be approxi
mately lognormally distributed by
the central limit theorem (see, e.g.
Aitchison and Brown, 1957). More
generally, the lognormal model has
been useful for analyzing a wide
range of ecological data. As Dennis
and PatH (1988) put it: "Ecological
abundance data are intrinsically
positive, with a few enormously
high data points typically arising in
every study. The lognormal distri
bution is an ideal descriptor ofsuch

tiibution of abundance data gcncr=
ated by marine surveys has a large
variance, is highly skewed to the
right, and contains a substantial
proportion of zeros. Because of this
large variability, the sample mean
has a low level of precision even for
relatively intensive surveys (Gross
lein, 1971; God0, 1994; Pennington
and God0, 1995 I. A common prob
lem in the analyses and interpreta
tion of skewed survey data, is that
a single immense catch may account
for 50% or more of the total catch
during a survey (Sissenwine, 1978;
Dew, 1990; McConnaughey and
Conquest, 1992; Bowering and
Brodie, 1994). These extreme val
ues not only greatly affect the esti
mate of the mean but also of the
variance (Otto, 1986). As McCon
naughey and Conquest (1992) ob
served, although these large values
cause much uncertainty for man
agement, they reflect the spatial
distribution of the species and are
not outliers that should be dis
carded. In practice, the use ofmore
efficient sampling schemes or esti
mators is the only realistic way to
increase survey precision; the total
number of samples that can be
taken is limited by the high cost of
sampling at sea (Gunderson, 1993).

One possible way to increase the
precision of survey estimates is to
model the observed distribution of
catches and exploit the model's
properties to develop more efficient
estimators of population param-

timates for data sets that contain a very
large catch. The properties and effi
ciency of the ll.-distribution estimators
are examined and the techniques are
applied to various marine data sets.

Abstract."""'l'he spatial distribution
of marine organisms is highly patchy.
Because of this patchy distribution,
data from marine abundance surveys
are highly skewed and have a large
variance. Compounding the problem of
estimating the mean abundance from
such data, is that occasionally a rela
tively huge catch will occur. These large
catches are not "outliers· but do domi
nate the estimates of the mean and
variance. Alognormal model ofthe non
zero survey values la ~-distribution)is
used to model survey data. The estima
tors, based on the lognormal model, ap
pear to be much more efficient for ma
rine data than the usual sample esti
mators. In particular, the lognormal-
based estimators provide reasonable es-
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Again for the Ll-distribution, the sample mean, X,
and c are both unbiased estimators ofthe mean. Like
wise, the sample variance, s~, and d are unbiased
estimators of the population variance. If x is used
to estimate the mean, then s;ln. the sample vari
ance divided by the sample size, is an estimate of
the variance of x. But s; can be a very inefficient
estimator compared with d, and, therefore, it is fre
quently recommended that din be used to estimate
the variance of x (Aitchison and Brown, 19571. The
minimum variance unbiased estimator of the vari
ance of c is given by (Pennington, 1983 I

m _{m 2 q (m -1)" (m-2 2)} > 1-exp(2y) -gm(s-/2)- -- gm --8 ,m
n n n-1 m-1.

data with a positive range, right skewness, heavy
tail, and easily computed parameter estimates."

To estimate efficiently the mean ofskewed marine
survey data and to be able to assess its precision, I
examined an estimator based on a lognormal model
of the distribution. I present the estimator's theo
retical efficiency, assess its performance by applying
it to several real marine data sets, and give methods
for constructing confidence intervals.

Statistical methods

Suppose the nonzero catches generated by a survey
are lognormally distributed, i.e. the logged values are
normally distributed. If the distribution contains a
proportion of zeros, then it is called all-distribution
(Aitchison and Brown, 1957>' If zeros do not occur,
then it is the usual lognormal distribution.

Estimating the mean and variance of the
d-distribution

As is the case for any distribution, the sample aver
age, x, and variance, s~, are unbiased estimators of
the mean and variance ofthe Ll-distribution. Because
of the properties of the lognormal distribution, the
minimum variance unbiased estimators (denoted by
c and d) of the mean and variance of the Ll-distribu
tion are given by (Aitchison and Brown, 1957)

m-1
gm V )= 1+--t+
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Estimating the variance of xand c

0,

(3)
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(4)

m exp(y)gm(s2/2), m>1n
c= Xl m=1 (1)

n

0, m=O

and

Ifm = n, i.e. there are no zeros, then Equations 1, 2,
and 4 reduce to the usual estimators for the lognor
mal distribution.

Relative efficiency of xand c

For the two estimators of the mean, xand c, the one
with the smallest variance is the most efficient esti
mator. The formulas in the last section give estimates
ofthe variance based on the particular sample drawn
from the distribution. The expected or true variance
of x is (Aitchison and Brown, 1957)

0, m=O

(2)
_ exp(2Jl +0'2){q. }var(x) = p[exp(O'-) -1] + p(1- pI, (5)

n

where n is the number ofobservations, m is the num
ber of nonzero values, y =In(x) , y, and s2 are the
sample mean and variance of the logged nonzero
values, xl denotes the single untransformed value
when m equals one, andgm(t), which is a function of
m and t (e.g. t = s2 / 2 in Equation 1), is defined by

where Il is the mean and (J is the standard deviation
of the log-transformed nonzero values, and p is the
proportion ofnonzeros. Smith (1988) derived the ex
pected value ofvarest(c), which, in the same notation
as above, is given by .
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It can be shown using results from Bradu and
Mundlak (19701 that the vane) is always less than
or equal to var( x), both decrease as n increases, but
var(c) decreases more quickly than does var( x). For
values of a2 typical for marine daLa, uar(c) is consid
erably smaller than var( x) (Pennington, 1986;
Smith, 1988). This can be seen in Figure 1 which
contains plots of var(cl divided by var( x) versus
sample size for a range of a2's appropriate for ma
rine survey data.

is an index of abundance. The mean of the lognor
mal distribution is given by exp(,u + 02/21. McCon
naughey and Conquest (1992) have suggested that
for lognormally distributed survey data, exp( Y), a
slightly biased estimate of exp(,u), may be a more
stable index for following trends in abundance than
estimates of the mean. That is, if 02 is constant over
time (which is equivalent to the coefficient of varia
tion of the untransformed variable being constant)
then exp(/l), the median of the lognormal distribu
tion, will also be proportional to abundance. The vari
ance ofexp( y I can be considerably smaller than the
variance of e.

The mean of the A-distribution is p[expt,u + 02/2)].
If the mean is proportional to population size and 02
is constant for a survey serles, then p[cxp(,u)] 'K/ill
also be an index of abundance. It can be shown with
techniques similar to those in Pennington (1983) that
the minimum variance unbiased estimator, k, of
p[exp(/l)] is

m (" _8
2

")-exp(y)gm , m> I
n 2(m-l)

Tracking trends in abundance

For a series ofmarine surveys, it is usually assumed
that the mean catch per tow is proportional to popu
lation size. If this is the case, then the estimator, c,

k= Xl

n

0, m=O

(7)

G' = 3
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G' =4

(8)

m=O

m=1

0,

As before, ifm = n, then Equations 7 and 8 reduce to
the lognormal case (Bradu and Mundlak, 1970).

and the minimum variance unbiased estimator ofthe
variance of k is given by

var.81 (h) =

If n is large, then c ± 2[varest (c)]l/2 and k ± 2[varest
(k)]1/2 are approximately 95% confidence intervals.
For smaller n, a conservative approach for construct
ing confidence intervals is to calculate separate in-

Confidence intervals
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Figure'
The relative efficiency of the estimators c and x for esti
mating the mean of the .1-distribution. The plots show the
vartc) divided by the van x) as a function of sample size
when the variance ofthe nonzero logged values, 03 , equals
2, 3. 4, and 5, and when the proportion of nonzero values,
p, is 0.8.

Sample size
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tervals for p and for the mean (or median) of the log
normally distributed nonzero values. For example,
if (PL ' pu) is a 95% confidence interval for p and (L,
U) is a 95% interval for the mean (or median) of the
lognormal component (see, e.g. McConnaughey and
Conquest, 1992), then (PLL, PuU) will have a confi
dence level of at least 90% (=0.95 x 0.95).

Examples

There are two types of data sets that are typical for
marine abundance surveys. The first type has a single
large catch that can be many times larger than the
next biggest catch. This huge catch may account for
more than 50% of the total catch taken during the
survey. The other category, and the more common
type, is that the distribution of catches is highly
skewed, as is the case for the first type, but there
are no isolated large catches that dominate the total
catch. These are the basic types of data sets that
would be expected ifsamples are taken from a highly
skewed lognormal distribution.

Isolated large catches

Occasionally, a very large value can occur when
samples are drawn from a lognormal distribution.
The first example (Table 1) is an artificial data set

generated from a lognormal distribution with Jl = 0
and OJ- = 4. The mean of the distribution is 7.4 and
its variance is 2,926. Because of one large point in
the sample, the estimates, x = 38.8 and s: = 63,320,
are much larger than the true values. The estimated
standard error of the sample mean based on the
sample variance is 35.6 [= (63,320/50)112].

The sample estimates ofthe logged values are y =
0.175 and s2 = 3.921. Hence the estimates ofthe mean
and variance from the minimum variance unbiased
estimators are [Equations 1 and 2, m = n = 50]

c = exp<o.175)g5o(1.961) = 7.6

and

d =expW.350){g50 (7.842) - g50(:: x 3.921)}

= 1.42 x (922.83 - 34.07) = 1261,

which are much closer to the true values than are
the ordinary sample estimates. The estimate of the
standard error of the sample mean using d is 5.0
[=(1261150)112] as compared with an estimate of35.6
based on the sample variance. The expected stan
dard error of the sample mean (when n = 50) is 7.6
[=(2926/50)112].

The estimated variance of c is given by (Equa
tion 4)

Table 1
An artificial data set generated from a lognormal distribution, catch per unit of effort (CPUE) data for red king crab from a 1991
trawl survey in the Bering Sea. and CPUE data for petrale sole from a 1992 survey off the west coast of the United States.

Artificial data

0.03 0.03 0.04 0.09 0.14 0.18 0.20 0.22 0.25 0.25
0.25 0.27 0.27 0.27 0.30 0.38 0.40 0.42 0.51 0.55
0.61 0.74 0.80 0.82 0.84 0.86 1.02 1.41 1.91 2.08
2.35 2.72 3.20 3.21 3.22 3.26 3.39 4.21 4.76 5.61
7.47 8.06 8.25 8.80 8.85 9.10 12.92 16.94 23.61 1782.19

Red king crab CPUEI

65 66 69 71 72 73 76 78 78 79
81 83 84 85 86 108 141 144 152 154

154 157 160 161 165 183 204 234 263 265
292 313 317 339 413 435 455 469 569 609
625 746 758 813 909 1056 1145 1197 1339 1789

1842 2520 4194 4286 5424 32538

Petrale sole CPUE2

4.89 6.31 7.66 11.12 11.31 12.23 13.16 13.61 20.96 23.64
26.31 26.79 28.58 30.07 43.87 56.49 71.43 81.08 94.30 103.02

112.71 115.48 153.96 169.52 179.83 199.80 205.71 310.82 398.51 4635.18

1 The data set also includes 24 zeros.
2 Ten zeros are not shown.
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var••t(c) = explO.350){g:o(1.961) - g50(3.84l)}

= 1.42{(6.39)2 -34.07} = 9.7.

Thus the estimated standard error ofcis 3.1 (= (9.7)112)
as compared with an expected value of3.8 (from Equa
tion 6,p = 1). For further examples ofthe performance
ofthe estimators on lognormal data, see Aitchison and
Brown (1957), Blackwood (1991), McConnaughey and
Conquest (1992) and Conquest et al. (1996).

The next three examples are survey data that are
similar in appearance to the artificial data set in that
each contains a single large isolated catch. The first
data set is from a trawl survey in the southeastern
Bering Sea in 1991. In Table 1 is shown the survey
catch per unit ofeffort (CPUE) ofmale red king crab,
Paralithodes camtschatica, of legal size. The largest
CPUE is six times greater than the second largest
value and accounts for nearly 50% of the total sur
vey catch. In Table 2 the estimates of the mean and
the standard errors are calculated as above. The pat
tern of the estimates is similar to that for the artifi
cial data. In particular, the estimate ofthe mean, c =
545.0, is much smaller than the sample mean (864.8)
and appears to be more precise. The reason that c is
so much lower than x is that, based on the L\-lognor
mal model of the data, a CPUE as large or larger
than the biggest value (32,538) would have occurred
for approximately 1 in 2,200 tows during the 1991
crab survey, and c weighs the value accordingly. In
contrast, the sample mean gives each CPUE value
equal weight.

In Table 1, CPUE data are given for petrale sole,
Eopsetta jordani, from a 1992 trawl survey off the
west coast of the United States. The largest catch is
65% of the total catch and is 12 times larger than
the next largest catch. Estimates of the mean and
standard errors are given in Table 2.
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The last example of this type of data set is from a
trawl survey off the east coast of the United States.
The data (Sissenwine, 1978) are the catch per tow in
1973 of Atlantic mackerel, Scomber scombrus. The
largest catch (5,182 kg) is more than 25 times greater
than the next largest (194 kg) and is 92% of the total
catch. This is the one example presented for which
lognormality of the nonzero values was rejected
(P=O .02). Though the estimate c =2.0 kg/tow is con
siderably smaller than the sample mean ( x=26.2 kg/
tow), it is much more consistent with previous and
subsequent survey indices (e.g. 1.6 kg/tow in 1972
and 2.5 kg/tow in 1974) than is the sample mean (see
Fig. 5 in Sissenwine, 1978).

No dominating iarge catch

The more usual type of survey data set is one that is
highly skewed but does not contain a relatively large
isolated value. A typical example ofthis sort ofdata is
seen in Figure 2 which shows the catch per tow ofjuve
nile Arcto-Norwegian cod, Gadus morhua, collected
during a 1989 midwater trawl survey in the western
Barents Sea (Helle, 1994). The estimate of the mean
from c is 55.2 and from x is 49.7. Similarly, the esti
mate d is greater than' the sample variance (Table 2).

Another example is from a 1989 zooplankton sur
vey in the Barents Sea (Helle, 1994). Figure 3 is a
plot ofthe biomass per tow ofcopepods sampled with
a Juday plankton net. The frequency distribution is
similar to that in Figure 2, and, again, the estimates
c and d are larger than the ordinary sample esti
mates (Table 2).

The sample average and variance will be underes
timates for most samples (i.e. be smaller than the
true values). This is due to the sampling distribu
tion of x and s;, which, for a highly skewed distri
bution, will still be skewed to the right for small to

Table 2
Summary statistics for estimating the mean and standard errors for six data sets, where n is the sample size, m is the number of
nonzeros, x is the sample mean, se. is the sample standard error (SE I, sed is the SE based on a lognormal model, yand s2 are the
mean and variance of the nonzero logged values, c is the estimate of the mean based on a lognormal model, and [Mr••t (C)]ll2 is its
estimated standard error. The expected or true values for the artificial data are in parentheses.

Data set n m x se. sed Y 82 C [var••t (e )]112

Artificial 50 50 38.8 35.6 5.0 0.175 3.921 7.6 3.1
(7.41 (7.6) (7.6) (0) (4) (7.4) (3.8)

Red king crab 80 56 864.8 415.0 156.0 5.755 1.866 545.0 134.8

Petrale sole 40 30 179.2 115.2 46.9 3.96 2.238 112.1 39.8

Atlantic mackerel 216 67 26.2 24.0 1.4 -0.165 4.269 2.0 0.8

Juvenile cod 161 99 49.7 11.7 26.7 2.759 3.572 55.2 16.4

Zooplankton 160 160 478.1 68.9 93.2 5.338 1.876 525.7 77.2
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Figure 2
Frequency plot of the number per tow of juvenile Arcto
Norwegian cod from a 1989 midwater trawl survey in the
Barents Sea (Helle, 1994). There were also 62 zeros (n=161)
which are not included in the plot.

moderate sample sizes. The median can be much
smaller than the mean for a skewed distribution, and,
therefore, the sample estimators are not only less
efficient but will underestimate the true values of
the parameters most of the time (Pennington, 1983;
McConnaughey and Conquest, 1992; Conquest et a1.,
1996), The sampling distribution of s; is much more
skewed than is the sampling distribution of X, which
is the reason that s; often greatly underestimates
its expected value more often than does x(Pen
nington, 1986), The sample estimators are unbiased,
even though most of the time the estimates are low
and are very high for the occasional sample that con
tains a huge catch (McConnaughey and Conquest,
1992).

Discussion

The estimators of abundance, based on the lognor
mal model, perform as expected on real survey data
if the underlying model for the nonzero values is a
lognormal distribution. The estimates are more pre
cise, and the occasional huge catch does not affect
the estimates nearly as much as it does the sample
average (see also McConnaughey and Conquest,

Biomass

Figure 3
Biomass (l!g/m31per tow ofcopepods Calanus finmarch icus
and Oithona similis. Data are from a 1989 plankton sur
vey in the Barents Sea (Helle, 19941. There were no zero
values (n=160).

1992). The A-estimators treat these large catches as
part of the distribution, as a reflection of how fish
are actually distributed spatially, eliminating the
need to handle them as "outliers," that is, to discard
the points arbitrarily in an analysis ofthe data. Since
all models only approximate reality, an advantage
in using lognormal-based estimators for marine data
is that they appear to be fairly robust to deviations
from the model (Blackwood, 1991; Pennington, 1991;
Conquest et aI., 1996).

The A-estimators can be much more efficient than
the sample estimators but lose this advantage for
small samples (see Smith, 1988; Fig. 1). Thus for
stratified surveys in which the region is divided into
many relatively small strata and only a few stations
are selected in each stratum, little would be gained
by using the A-estimators (Smith, 1988). Only a slight
gain in precision is usually achieved by increasing
the number ofstrata beyond 6 (Cochran, 1977). Con
sequently it appears that a better survey design
would be one that has larger strata with at least 20
30 stations in each stratum (Fig. I), Not only would
this design improve the efficiency of the A-estima
tors but it would then be possible to exploit optimal
sample allocation schemes that may be more efficient
(Gavaris and Smith, 1987; Polacheck and V0lstad,
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1993). For current surveys with sampling intensity
proportional to stratum area, it would likely be better
to combine the small strata into ones with larger sample
sizes for calculating abundance estimates.Another way
to increase sample sizes for future surveys and to im
prove survey efficiency in general would be to reduce
tow duration and use the time saved to sample at more
stations (Pennington and Vfjlstad, 1991, 1994).

It has been suggested that since the lognormal
model may be incorrect or not robust, the sample
average and variance are the preferred estimators
(Jolly and Hampton, 1990; Myers and Pepin, 1990;
Smith, 1990). Using finite population techniques,
Smith (1990) examined the performance of the esti
mators based on the L\-distribution and concluded
that for smnII populations the estimators are biased
and not robust to deviations from the model. But the
sort ofmodel-based bias that Smith considered is not
a concern for marine surveys. Because for most, if
not all, marine surveys, the population size, i.e. the
total number of tows that could be made, is effec
tively infinite, whereas Smith's simulations were
samples from populations ofsize 30. There is no rea
son that the L\-estimators should be unbiased if ap
plied to samples from small populations. For Smith's
simulations, the usual properties of the lognormal
based estimators are apparent if the small samples
tn=3) are assumed to be from a larger population.
That is, if the samples of size 3 are assumed to come
from a survey for which the possible number of tows
(the population size) is large, then the estimators are
unbiased (see Table 1 in Smith, 1990). The model
based bias that Smith observed is a function ofpopu
lation size, not a property as such of the L\-estima
tors or the size of the sample.

What would cause concern is the possiblity that
the underlying distribution may have appeared to
be approximately lognormal but was not and that
the departure from lognormality caused the lognor
mal-based estimates and inferences to be mislead
ing. Myers and Pepin (1990) have claimed, motivated
by some simulations, that lognormal-based estima
tors are very sensitive to undetectable deviations
from lognormality. But to test a model fairly, the al
ternative models should be realistic. The nonro
bustness that they observed was simply due to the
contamination of lognormal distributions with very
small values, the opposite of what causes the impre
cision of abundance estimates from marine surveys,
i.e. the large catches (Pennington, 1991). It was not
only that the contaminating values were small, but
there was a relatively high probability that small
values would occur. Since lnx goes to minus infinity as
x approaches zero, these small values resulted in large
negative values on the log scale, which caused the ex-
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treme instability ofthe lognormal-based estimators in
Myers and Pepin's simulations. Aitchison (1986, p. 270)
made the same point when discussing a sensitivity
analysis ofanother log-based procedure. Analyzing ar
tificial data is no different from analyzing real data; all
aspects ofthe simulated data should be examined care
fully (see, e.g. McConnaughey and Conquest, 1992) to
ensure that the resulting conclusions are relevant.

In practice, even if such small values were statis
tically "undetectable" (Myers and Pepin, 19911, one
would know (e.g. by looking at the data) whether val
ues could be arbitrarily close to zero and, if so, deal
with them appropriately as in Pennington (1991). The
small values that may occur after transforming abun
dance data for a particular length class with an age
length key (Myers and Pepin. 1991) ':lllill not cause
any problems ifthe original catch at length data are
distributed lognormally. This is because In(ax) = In a
+ In x, and, therefore, the log-based estimate of the
mean ofax is a multiplied by that for x.

The reason most often given for using the sample
estimates and not employing any modeling tech
niques is that the sample average and variance are
always unbiased estimators (Myers and Pepin, 1990;
Smith, 1990). Lognormal-based estimators may be
slightly biased for some applications but they are not
overly influenced by the occasional huge catches and
therefore can have a considerably smaller mean
square error than the sample estimates for highly
skewed distributions (Conquest et aI., 1996).

There are problems if the sample estimates are
used for marine data (Lo et aI., 1992). The estima
tors are very sensitive to large catches and therefore
may be rather inefficient. Another difficulty is that
for the sample sizes common for marine surveys, the
distribution of the sample average may be far from
normal for these highly skewed distributions
(Sissenwine, 1978; McConnaughey and Conquest,
1992; Conquest et aI., 1996). Thus the central limit
theorem cannot be invoked to assess the uncertainty
associated with the estimates or to make inferences.
Likewise, the distribution ofthe L\-estimator may not
approximate a normal distribution for small samples,
but for skewed distributions it appears to converge
to normality more quickly than does the sample mean
(Conquest et aI., 1996). For small to moderate sample
sizes, methods based on the lognormal model can be
used to make confidence statements.
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