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ABSTRACT

Estimates of historical ab~ndance of animal populations are important in many management deci
sions. Historical estimates based on a simple model of population growth have been made for several
populations of dolphin involved with the yellowfin tuna purse seine fishery. We used the data for the
bridled dolphin, Stenella attenuata, to investigate the behavior of the model by which these historical
estimates were calrnlated. For populations with low net reproductive rates, the effect of bias in the
estimates of the input parameters on the estimated historical abundances was approximately linear
and additive. When all the input parameters were independently estimated. the variances of the
historical abundance estimates were dominated by the variance of the initial abundance estimate and
the coefficient ofvariation ofthe historical estimate was less than the largest coefficient ofvariation of
any parameter.

(2)

Many decisions about the management of animal
populations are based on the estimates of abun
dance of the population relative to its historical or
preexploitation size. These estimates are basic to
any application of the theory of maximum sus
tained yield as incorporated in several interna
tional marine mammal management agreements
such as the North Pacific Fur Seal Treaty and the
International Whaling Convention. Similarly, the
concept of "optimum sustainable populations" as
specified in the recent Marine Mammal Protection
Act of 1972 (MMPA) has been defined in terms of
comparing the present size ofa population with its
original size (Southwest Fisheries Center3 J.
Schools of dolphin of several species (primarily
Stenella attenuata and S. longirostris) have been
used by purse seine fishermen in the eastern tropi
cal Pacific to locate yellowfin tuna, Thunnus alba
cares, since 1959, as described by Perrin 1.1969>.
Significant numbers of dolphin have been killed
by becoming entangled in the purse seines. In
order to make management decisions under the
MMPA about these dolphin populations, the Na
tional Marine Fisheries Service (NMFS> needed
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estimates of the preexploitation abundance of the
various populations. The NMFS convened awork
shop of scientists to obtain the estimates based on
a simple model of population change (see footnote
3>. This paper evaluates the behavior of estimates
of abundance obtained from their approach. This
is important in order to be able to evaluate the
degree ofconfidence to be placed in such estimates.
and hence in management plans based on them.

METHODS AND MATERIALS

The model used to estimate preexploitation
abundance is based on a common discrete model of
population growth:

where NT = the abundance at time T

b the birth rate
d the natural death rate

K T the number of animals killed, as-
sumed to occur at the beginning
of time interval T

NT + 1 = the abundance 1 time unit later.

Reversing the procedure (Le., solving the above
equation for NT) results in the expression

N
N = -----!!!..+K

T l+R T
T

where NT now is the estimate of abundance 1 yr
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earlier andR T is the net reproductive rate (b -d>.
The above model was modified in the procedure
used by NMFS to account for situations when the
kills occur throughout the time interval instead of
instantaneously at the end of the interval, as:

NT+1+ 0.5KT
NT c= 1+R +0.5Kr . (3)

T

This equation can be repeatedly applied to give
estimates any number of years (t) into the past.
When rearranged to explicitly display the popula
tion size t years earlier, and relabeling so that the
initial abundance is No. one obtains

1974 and the annual incidental kills and repro
ductive rates from 1959 to 1974. Several se
quences of estimated annual kills and reproduc
tive rates were considered, incorporating the
uncertainty in the data.

In the present paper the sequences of annual
kills and net reproductive rates given in Table 1
are used to illustrate several general aspects of the
behavior of Equation (4). These correspond to the
"high kill" and "central reproductive rate" se
quences for the bridled dolphin, 8tenella at
tenuata, in the Workshop report. The estimate of
1974 abundance used by us and the Workshop was
3.5 million.

"It should be noted that the estimates used here are based on a
number of assumptions currently under investigation and that
these estimates are subject to significant change in the near
future (I. Barret, Director, Southwest Fisheries Center, La Jolla,
CA 92038, pers. commun. April 1978).

Note in this form that the time-index t· runs back
wards from zero. As is apparent in this form, the
estimation of abundance t years earlier involves
2t+ 1 parameters. The sequences of annual kills
and net reproductive rates can be termed the kill
and the net reproductive rate vectors, each com
posed of t elements.

The data used here to explore this estimation
procedure is from the report of NMFS Workshop
discussed above (see footnote 3).4 From existing
unpublished data and reports the Workshop par
ticipants used estimates of the population size in

Estimation of Bias

A sensitivity analysis was done to examine the
effects of biased parameter estimates on the
backcalculated abundance. A new population size
1yr earlier, from Equation (3), when each parame
ter is changed by a specified amount is

(6)

(5)

No (1+n)+0.5K
1
(1+k)

1+R
1
(1+r)

+0.5K
1
(1+h)

No (1+n)

t
.n (1+R .(1+r»
J=1 J

t K.(1+k) (1+(R.(1+r)/2»
+ ~ J J

j=1 t
~. (1+R .(1+r»
I=J 1

Ni(n, h, r)

Nt{n, h, r) =

and in general for t years earlier,

(4)
Kp+Ri2)

t
.n. (1+R.)
I=J 1

t
+ ~

j=lt
n (1+R.)

j=l J

TABLE I.-Estimates used for kill and reproductive rate vectors
ofStenella attenuata in the eastern Pacific.

Kill
Year (thousands) Nel reproductive rale

1 1973 120 0.040
2 1972 273 .040
3 1971 185 .640
4 1970 308 .036
5 1969 331 .032
6 1968 164 .028
7 1967 194 .024
8 1966 281 .020
9 1965 297 .016

10 1964 255 .012
11 1963 133 .008
12 1962 106 .004
13 1961 446 .000
14 1960 534 .000
15 1959 129 .000
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where No, RI' and K t are defined as above, and
n the proportion that No deviates from its

estimate
r = the proportion that all elements of the net

reproductive vector deviate from their es
timates

k the proportion that all elements of the kill
vector deviate from their estimates.

N', (n,k,r) was then compared with Nt from Equa
tion (4) or equivalently N't (0,0,0>. As a measure of
the sensitivity of the basic model, 8 1 (n,k,r) is
defined to equal the percent that N'I tn,k,r) de
viates from Nt
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(Nt (n, k, r)-Nt)
St (n, k, r) = ,- Nt • 100. (7)

Estimation of Variance

The variance of the backcalculated estimate of
N, from Equation (41 was approximated using the
delta method (Seber 19731. This method is ·based
upon a Taylor series expansion for a function in
which quadratic and other higher order terms are
ignored. Iff is a function of the random variables
Xl> X2, X3 ••• ,Xn then the expression for the vari
ance of f by the delta method is

In applying this expression to Equation (4), it is
necessary to be able to define which of the
parameters should be considered as random vari
ables, and to give reasonable estimates for value of
the variances and covariances of these variables.
For the purpose ofexploring the behavior ofEqua
tion (4), we assumed that the estimates of all the
parameters in Equation (4) are independent ran
dom variables. The covariance terms in Equation
(8) are then zero. This approach provides a picture
of the variance of the back estimate of abundance
ifin fact independent estimates ofthe kills and the
net reproductive rates were available for each
year. A generalized expression for the variance
using this approach is

( aNJ t (aN.]V(N,) V(No) aN~ + ~ V(Kj ) aN;
j=l

t (aN),+ ~ V(Rj ) aR: (9)
j=l

where all parameters are defined as for the basic
model [Equation (4)]. For detailed expressions for
each of the right hand terms see Appendix I.

As noted the method used for approximating the
variance of a function depends on the higher order
terms in the Taylor's series expansion being small.
The higher order terms in the delta method ex
pression for the variance ofN, are composed of the

second and higher order derivatives of Nt with
respect to No. K

"
and R,o and the higher order

central moments ofthe probability distributions of
the estimates of No, K" and R, (i.e., skewness.
kurtosis, etc.). The second and higher derivatives
with respect to N, and K,are zero. Thus the terms
involving R , are the only higher order terms not
equal to zero. The higher order derivatives of Nt
with respect to Rt involve R,+ I to increasing nega
tive powers. The three higher order moments ofR,
are always decreasing since R t is much less than
one. Thus each of the higher order terms in the
delta method expression for the variance ofNt are
each less than the first order term in R t <iii of
Appendix D. The contribution of this first order
term inR, to the variance ofNt is small, as shown
below. Thus the error induced by ignoring the
higher order terms in the Taylor's series appears
small.

The objective in doing the variance calculations
was to understand the behavior ofthe variance of
the population size when estimated by the basic
back projection model [Equation (4)]. Thus a range
of variances was calculated for a range of reason
able values of the variances of the estimated
parameters. However, in our example of bridled
dolphin estimates of the variance of many of the
parameters were not available. Many of the kill
estimates were not independently estimated and
hence have large unknown covariances (Smith
and Polacheck5 ). Estimates of net reproductive
rate were obtained by extrapolation from other
populations and from assumptions about density
dependence. It is not clear that the uncertainty in
these estimates can adequately be described by
the notion ofvariance. Thus, the variances that we
used and that we calculated for N, should not be
interpreted as actual estimates ofvariance for this
population.

RESULTS

Bias

The results of the sensitivity analysis of the
basic model will be presented by examining the
effects ofVarying each ofthe variables n, k. and r of
Equation (7.1, separately, and then in combina
tions.

The sensitivity of the back projected estimates

·Smith, T. D., and T. Polacheck.1977. Uncertainty in estimat
ing historical abundance of porpoise populations. Contract Rep.
MM 7A COO6, 39 p. Marine Mammal Commission, 1625 Eye
Street, Washington, DC 20006.
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30

sl,,) 2S

(8,) for a fixed number of years t into the past is
linear with respect to nor k (Figure 1>. This linear
ity can be seen in Equation (6) since nand k enter
only as linear terms in the numerator. Positive

values of either n or k yield positive deviations in
the back estimates. However, the farther back the
population is projected in time, the smaller the
contribution of No to the back estimate becomes
relative to the contribution of the kills. Thus the
effect ofbias in the estimate of the initial numbers
(n) becomes progressively smaller the farther
back in time the population is projected, while the
consequence of a consistent bias in the kill esti
mates (kl becomes larger (Figure 2>. Since the
annual kills have no simple relationship to time,
the effect of a particular value of n or k over time
(Figure 2) cannot be described by any simple func
tion. This trade off in the sensitivity of the back
projected estimates between nand k is exact in the
sense that for any decrease over time in the slope
of 8 with respect to n there is an equivalent in
crease in the slope of8 with respect to k. This can
be seen by evaluating the partial derivates of 8
with respect to n and with respect to k and noting
that they sum to 1.

The effects of bias in the estimates of the net
reproductive rate vector are more complicated
than for the other two factors. Positive deviations
in the net reproductive rates (r) yield negative
deviations in the back projected estimate IFigure
2), The effect ofr tends to increase over time (Fig
ure 21. 8 approaches being linear with respect to r
for any particular year, but unlike the relation
ship for k and n, this result is not exact (Figure 1).

The approximate linearity of the sensitivity ofNt
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FIGURE l.--Sensitivityofthe modelSt (n,k,1'.J in 1959 fora range
ofdeviations in the initialnumberlnJ, for a range ofdeviations in
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rate (1'.), for Stenella attenuata in the eastern tropical Pacific.

15

~
J!. 10

!5
:f 5
'0;

Jj o

• ' S,I.J.O.O,

o =SI 10..J.0'

• = 5.10.0,.3 1

FIGURE 2.--Sensitivity of the model St
(n,k.r.J over time to a 30% deviation in
the initial number In = 0.3), in the kill
vector lk = 0.3), and in the net reproduc
tive rate vector (r. = 0.31 when all factors
are held constant for Stenella attenuata
in the eastern tropical Pacific.

••0----0

0_---0---0--
0'-'-

••0--- 0-··-0-·--

••0'-
••0--

,-0--
_0"

25

30

20

0 2 4 5 6 7 8 9 10 11 12 13 1.4 15
Time I,)

1973 1971 1969 1967 1965 1963 1961 1959
Year

774



SMITH AND POLACHECK: ANALYSIS OF SIMPLE MODEL

.2 .3 ... .5.1-.4 -.3 -.2 -.1 0

-."

FIGURE 4.---Contours ofequal sensitivity of the back estimated
abundance in 1959 for a range ofdeviations in the initial number
InIand in the kill vector Ik) when the net reproductive rate vector
is held constant for Stene/la attenuata in the eastern tropical
Pacific.
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from a linear model by as much as 5%. This in
teraction effect is negative, resulting in a surface's
bending downward from a strictly linear model
when nand r have the same sign.

If all three factors vary together. the surface

to r appears to be a general feature of this proce
dure when r is small. This can be seen by examin
ing St expressed as a function of r. which can be
obtained explicitly by substituting the definitions
of Nt [Equation (4)] and N't[Equation (6)] into
Equation (7) and simplifying.

The consequences of having two factors varying
simultaneously are shown in the series ofcontours
of equal values of S from Equation (7) (Figures
3-5). These contour plots present a visual picture
of the sensitivity of the back projection to the dif
ferent factors. From this set of contour maps. it
can be seen that the surface generated byS [Equa
tion (7)] tends to be nearly linear. Since S has no
nonlinear terms with respect to nand k, the sur
face described by S in these two dimensions is
simply a plane (Figure 4). There are nonlinear
effects between the net reproductive rate and both
initial abundance and the' sequence of kills. For
the example examined here, the nonlinearity be
tween k and r is insignificant. For instance, ifrand
k both equal 0.50. S deviates from a linear model
by <1%. In general the nonlinearity between k
and r will be insignificant as long as the kills in
anyone year do not represent a large proportion of
the population and as long as r is relatively small.
Also, for the data considered here~ the nonlinear
ity between the net reproductive rates and initial·
abundance is small but not insignificant. For
example. if both nand r equal 0.50, S deviates
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FIGURE 3.-eontoursof equal sensitivity of the back estimated
abundance in 1959 for a range ofdeviations in the initial number
Vll and in the net reproductive rate (r) when the kill vector is held
constant fur Stenella attenuata in the eastern tropical Pacific.

FIGURE 5.---Contours ofequal sensitivity of the back estimated
abundance in 1959 fur a range ofdeviations in the kill vector lk)
and the net reproductive rate vector (r) when the initial number
is held constant for Stene/la attenuata in the eastern tropical
Pacific.
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generated by8 is still relatively linear as there are
no terms in 8 containing n, k, and r and the pair
wise nonlinear effects are small as discussed
above. Table 2 provides examples ofpoints on this
three dimensional surface when n, k, and rare
equal in absolute values. It can be seen there. for
the example examined, that if the absolute values
ofn. k, and rare 0.10, the sensitivity ofN IS ranges
from -12 to +12.

An empirical equation can be fitted to the sen
sitivity surface (8) by fitting a linear function for
each factor considered independently and by de
termining a nonlinear term for nand r. The gen
eral form of this fitted equation is

where the b's are constant. The exact value of the
b's depends on the number ofyears the population
is projected back in time. For the example consid
ered here, projecting back from 1974 to 1959, the
values of the b's are shown in Equation (11):

8
15

(n,k,r) = (0.573k+0.427n-0.164r-0.125nr)
x 100. (11)

This empirical approximation [Equation (11)] de
viates by <2 from the true values of815 for values
of n. h, and r <0.5. This emperical equation is
useful as the magnitude of the b's provides a mea
sure of the relative sensitivity of the different fac
tors. Thus in Equation /11) it can be seen that for
the example considered here the 1959 abundance
estimate INI5 ) is most sensitive to bias in the esti
mates of the kills. This empirical equation also
provides an easy way to generate approximate
values of8 for any combination of values for n, h,
and r.

Variance
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bridled dolphin are summarized in Tables 3
through 6. Calculated values of the variance of Nt
from Equation (9), when all ofthe random variables
are assigned a coefficient of variation of 30%, are
given in Table 3,overall years from 1974 to 1959. It
can be seen that both the variances and the
coefficients of variation (CV) generally decrease.
The reduction ofthe CV over time is due to the fact
that the major contributions to the back estimates
ofthe population size are the addition ofthe kills of
the previous years, since the reproductive rate is
small. The variance of a sum of independent ran
dom variables is the sum of their variances. This
always results in a CV for the sum which is smaller
than the greatest CV ofany ofthe random variables
when the expected values of the random variables
are positive (Appendix m. As a generalization, it
can be stated that when the net reproductive rate is
small the CV ofthe back estimate will not be larger
than the largest CV ofany ofthe random variables,
and will usually be smaller.

Table 4 shows the breakdown of the variances
calculated in Table 3 into their major components.
The variance of No is the major factor in the vari
ance of these back estimates. The contribution of

TABLE 3.-ealculated variance and coefficient of variation for
the back estimate of dolphin abundance when all random vari
ables have a CV of 30%.

Variance CV Variance CV
Year 1"<10") (%) Year ('<10") (%)

1974 11.03 30.0 1966 7.04 19.1
1973 10.22 29.0 1965 6.9 18.0
1972 9.53 27.0 1964 6.8 17.1
1971 8.88 25.7 1963 6.71 16.7
1970 8.35 23.8 1962 6.67 16.3
1969 7.99 22.1 1961 6.71 15.7
1968 7.56 21.2 1960 6.75 15.2
1967 7.25 20.2 1959 6.75 15.1

TABLE 4.-Breakdown of the variance ofNt into the major com
ponents that contribute to the calculated variance.

Contribution to the variance of
Nt ( • 10'·) due to the variance in:

The results of the variance calculations for the

TABLE 2.-ValuesofSI5 (n,k,rJ when the absolute values ofn. k,
and r are equal.

Sign ofn
+

Absolute value Sign 01 r Sign of r
Ikl=lnl=lrl Sign of k + +

0.10 + 9 12 0 3
-3 0 -12 -9

0.20 + 16 23 0 5
16 1 -22 -17

0.30 + 24 36 1 8
-10 2 -33 -26
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Year

1974
1973
1972
1971
1970
1969
1968
1967
1966
1965
1964
1963
1962
1961
1960
1959

The initial The net
number The kills reproductive rate

110.3 0.00 0.000
101.9 .12 .156
94.2 .76 .305
87.1 .10 .452
81.2 1.755 .568
76.2 2.604 .664
72.1 2.70 .735
68.8 2.91 .784
66.1 3.49 .816
64.1 4.16 .835
62.5 4.64 .843
61.5 4.73 .843
61.1 4.99 .840
61.1 5.24 .840
61.1 5.55 .840
61.1 5.56 .840
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TABLE 5.-Coefficients of variation ICV) for the back estimates
of bridled dolphin in 1959 IN,.) for a range of CV for the
parameters of the model. The ranges of CVs of the kills, net
reproductive rate, and initial abundances were selected to illus
trate particular aspects of the behavior of the variances of the
back estimates.

CV 01 CV of the net CV 01 No
the kills reproductive rate 0 10 20 40

0 0 0 4.7 9.5 19.2
40 2.2 5.3 9.8 19.3

10 0 1.4 5.0 9.6 19.2
40 2.7 5.5 10.0 19.4

20 0 2.9 5.6 10.0 19.3
40 3.7 6.0 10.3 19.5

40 0 5.6 7.5 11.2 20.0
40 6.2 7.8 11.4 20.2

60 60 9.3 10.5 13.4 21.3
100 100 15.5 16.2 18.2 24.7

the variance of No tends to completely dominate
the variance of N, because of the assumed inde
pendence of the kill estimates. Table 5 gives the
CV for the back estimated population size of dol
phin in 1959 for a range of CV for the different
parameters involved in the estimate ofNt5 • As can
be seen in this table, unless the variance of No is
near zero or unless the CV ofthe kill and reproduc
tive vectors are extremely large (>60%), the CV
of the back estimate does not exceed the CV ofNo.

and the basic model [Equation (3)] for the dolphin
population examined here is given in Table 6. The
simpler model always gives a slightly higher es
timate for the size of the back projected population
but the increase in the estimate is always <1%.
The sensitivities of the two models are nearly
equivalent. When the values for the parameters in
these models deviate as much as 50% the differ
ence between sensitivities of the two models is
<1%. The approximate variances of the back es
timates of the two models are also similar.

That the difference between the original and the
simpler model is small can be shown by analyti
cally comparing the two models. If the projections
are made only 1 yr into the past, the ratio of the
estimate from Equation (2) to the estimate from
Equation (3) is

Only ifthe value ofR tK, is large relative to No +K1

can this ratio deviate significantly from 1. This is
only possible ifR 1 is relatively large. The general
formula for the ratio of the two models is

t j
.~ O.5K.R. (n (1+Rh -I»
J=I J J h=1

1 + ---t----.::.-.-t-------t-----j-----

No +.~ O.5K. (n (l+R
h

_
l
»+.~ O.5K. ( n

J=I J h=1 J=I J h=1

Comparison of Equations (2) and (3).

A comparison of the estimated back abundance
as calculated by the simpler model [Equation (2)]

TABLE 6.-Comparison ofthe back estimate ofthe abundance of
bridled dolphin as calculated by the basic model [Equation (3)]
and the simpler model [Equation (2)].

Simple model Basic model
Year (xlO") (xl()&) Simple/basic

1974 3.500 3.500 1.000
1973 3.485 3.483 1.001
1972 3.624 3.617 1.002
1971 3.670 3.659 1.003
1970 3.850 3.835 1.004
1969 4.062 4.0416 1.005
1968 4.115 4.093 1.005
1967 4.214 4.190 1.006
1966 4.412 4.386 1.006
1965 4.640 4.612 1.006
1964 4.840 4.811 1.006
1963 4.934 4.905 1.006
1962 5.021 4.991 1.006
1961 5.467 5.437 1.005
1960 6.001 5.971 1.005
1959 6.130 6.100 1.005

As in the case for projecting back only 1 yr, it can
be seen that unless the RjKj terms are large rela
tive to No and unless the net reproductive rate is
also large, the ratio of the two models will be close
to 1.

DISCUSSION AND CONCLUSIONS

The results of this analysis indicate that errors
in the input parameters do not compound in this
procedure for estimating historical abundance. In
fact, a systematic bias in the procedure for the
estimation of a single set of parameters (eitherNo
or R;'s or K/s) always induces a bias in the back
projected estimate which is less than the bias of
the estimated parameters. This conclusion follows
directly from the linear or near linear relation
between 8/ and n, k, or r with small rates of
change. Moreover, the effects of bias in two or
more sets of parameters are nearly additive. The
interaction effects of bias in estimates ofkills. net
reproductive rates. and the initial number tend to
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be small or nonexistent. This will be globally true
for the relationship between k and 11, but will be
true for the relationship between k, r, and 11 only
when the net reproductive rate is small. The rela
tive importance of bias in K;'s, R;'s. or No on N,
depends upon the actual values of the parameter.
In the bridled dolphin example. after 15 yr. the
back estimates were most selJsitive to bias in the
kill estimate, slightly less sensitive to bias in No.
and considerably less sensitive to bias in the net
reproductive rate. However, the importance of
bias in No will diminish with the number ofyears
in the back estimate with a proportionate increase
in the importance of bias in the kills.

The sensitivity analysis developed in this paper
will include the extremes ofa complete sensitivity
analysis of the model. The values for S, <O,k,m are
limiting values to a complete sensitivity analysis
of the individual elements of the kill vector onN,.
Similarly St lO,O,r) is a limit to complete sensitiv
ity analysis of the individual elements of the net
reproductive rate. Given the additivity of SI with
respectto n, r, and k, the surface S/ (n,k,r) contains
the extremes of a sensitivity analysis in all 2t+ 1
dimensions. If in fact the elements within the kill
vector and within the reproductive vector are
highly interdependent (as is the case for the data
used here), then the sensitvity analysis used to
look at the effects of bias in thie paper approaches
a total sensitivity analysis of the back projected
estimate given these constraints.

The variance approximations also indicate that
variability in the parameter estimates does not
result in compounding uncertainty in the back
projected estimates. When estimates of the
parameters are independent and the net reproduc
tive rate is low. the CV of the back estimate will be
smaller than the CV of the input parameters. In
our example if all the CV's were equal, the vari
ance ofNo would make the largest contribution to
the estimated variance ofN,. In general this will
be true as long as the kills in anyone year do not
approach the initial abundance. This is a direct
consequence of the basic additivity of the model
when the net reproductive rate is small.

In Smith and Polacheck <see footnote 4), an al
ternative probability structure was considered in
which the elements within the kill vector and
within the net reproductive rate vector were
highly interdependent. In this situation, the vari-
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ance of N, is not completely dominated by the
variance of No. The variances of N, calculated
using this interdependent probability structure
are larger than the variances presented here in
which all the parameters are assumed indepen
dent. However, the CV of Nt for the dolphin data
within this interdependent probability structure
is still less than the CV of the parameters if all
parameters have equal CV. It appears that even in
the situation in which a high degree of inter
dependence exists within the kill estimate or the
net reproductive estimates, the variability in the
parameter estimates does not induce compound
ing uncertainty in the back projected estimate.

The comparison of the results from the basic
model [Equation (3)] with the simpler model
[Equation (2 I] indicate that there are no sig
nificant differences between the two models as
long as the net reproductive rate is small. Thus it
appears that there is no reason to favor the more
complex model over the simpler.

In conclusion, it appears that this back projec
tion procedure (either mode\) has reasonable
statistical properties, at least when the net repro
ductive rates are small. However, Equation (1) is a
simplified description of how the abundance of a
population changes through time, especially in
not accounting for changes in age structure. The
authors feel that caution should be used in apply
ing estimates from this procedure to the manage
ment oflong-lived species since changes in the age
structure for long-lived species are likely to be
important.
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APPENDIX I.-Expressions for the variance components ofNt.

Expression for the right hand terms of Equation (9) are:

V(NO)(::t)2 = V(NO)(-:-t_
1
_)2

o n (1+R.)
j=l 1

t (aNtj2 t (1 + 005Rj )2
.~ V(K.) aK =.~ V(K.) t
1-1 1 j I-lIn (1 + R )

h=j h

t (aN)2 t (N. + O.5K. )2
~ V(R.) _t = ~ V(R.) 1-1 1

j=1 1 aRj j=1 1 (1+R.)2 h (l+R)
1 k=j+l k

ApPENDIX n.-Coefficient of variation of a sum of random variables.

(i)

(ii)

(iii)

The following is a proof that the coefficient of variation of a sum of two independent random variables is
smaller than the greatest CV for either of the random variables if the expected value of the random
variables is greater than zero.
IfA and B are independent random variables such that

E(A) = a>O E(B) = b>O and

CV(A) = v'V(A) ~ v'V(B) = eV(B)
a b

then

V(A)(b 2 + 2ab) > V(B)a 2 ,

V(A)(b 2 + 2ab) + V(A)a2 ~ V(B)a 2 + V(A)a 2 ,

V(A)(a + b)2 ~ [V(B) + V(A)]a2,

VeAl > V(B) + VeAl = V(A + B)

a2 (a + b)2 [E(A + B»)2 '

eV(A) > eV(A + B) 0
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