FEEDING STUDIES WITH THE GUM OF GRACILLARIA CONFERVOIDES AND CARBOXYMETHYLCELLULOSE

By Hugo W. Nilson* and Maurice Bender*

ABSTRACT
GRACILLARIA GUM AND CARBOXYMETHYLCELLULOSE ARE WHOLESOME PRODUCTS WHEN FED TO RATS AND MICE IN COMPARATIVELY LARGE QUANTITIES FOR PERIODS FROM WEANING TO DEATH.

INTRODUCTION

Investigation of the possibility of replacement of imported agar with seaweed gums of domestic origin, particularly for use as bacteriological media, was a wartime project of the Service's Fishery Technological Laboratory at College Park, Maryland. The gum of Gracillaria confervoides (North Carolina) met the specifications of the Pharmacopoeia of the United States XIII (1947) for agar. But, it was shown by Lee and Stoloff (1946) that this gum could not replace agar as a media for micro-organisms, at least for forensic purposes, since it exhibits a comparatively high degree of syneresis. The liquid of syneresis permitted spreading of plate cultures so no accurate counts could be made. The great majority of samples which were extracted also had such high viscosity at temperatures above 45° C. that they were unsuitable for bacteriological media involving mixing the inoculum with the medium.

However, the gum from Gracillaria could replace agar from Gelidium in certain industrial uses to good advantage. The difficulty in harvesting the seaweed has made the cost of material so high that postwar production, at least on any sizable scale, has not been continued. The data on feeding studies are reported herewith since domestic production may again be undertaken if more efficient harvesting and manufacturing processes can be devised.

Carboxymethylcellulose is made from non-fishery sources. The gum in solution, however, showed some initial promise of being used as a glaze on frozen fishery products. Unpublished data from this laboratory indicate that the carboxymethylcellulose film dries out and becomes brittle when fishery products, mostly whole fish which have been glazed with the solution, are stored in the freezer. This permits dehydration of the products. The experiments did not show sufficient promise to reconmend this gum as a coating medium. The feeding studies are reported herewith since the sum is used in considerable quantities in the food industry.

ANIMAL FEEDING TESTS

Rats and mice were allotted to the experiment at about weaning age. They were housed individually in wire screen cages fitted with screen floors. Food and water were allowed ad libitum. Live weight and food consumption data were taken at weekly intervals. Only male rats were used in the tests with Gracillaria gum, but both sexes were used in the tests with carboxymethylcellulose.

Groups were fed the control diet and diets containing 5 and 10 percent Gracillaria gum and 5 percent carboxymethylcellulose. The control diet consisted of casein, 15; lactalbumin, 5; lard, 15; brewer's yeast, 5 ; wheat germ, 2 ; salt mixture, U.S.P. XII, No. 2 for vitamin A and D assay, 4; cod liver oil, 2; and

[^0]

WEIGHING A TEST ANIMAL AT THE COLLEGE PARK FISHERY TECHNOLOGICAL LABORATORY.
an equal mixture of sucrose and and corn starch dextrin, 52 parts by weight. The different gums were incorporated into this diet at the expense of an equal amount of the sucrose-dextrin mixture.

The Gracillaria gum was purchased on the open market (1944) and the two lots which were used analyzed, respectively, 13.33 and 14.73 percent moisture; 1.48 and 0.86 percent protein (Nx 6.25); 7.95 and 5.32 percent ash; and 77.24 and 79.09 percent carbohydrates (by difference). This gum was produced conmercially by various companies operating at Beaufort, North Carolina. The carboxymethylcellulose, low viscosity type, was supplied by the Hercules Powder Company of Wilmington, Delaware.

The initial test with two levels of Gracillaria gum was carried out for a 10 -week period. Comparable data are given for the single level of carboxymethylcellulose which was fed. The data in Table lare comparable to those for algin reported by Nilson and Lemon (1942), and for agar and Irish moss reported by Nilson and Schaller (1941). The only statistically significant differences from the controls were greater mean food and water requirements per unit gain in weight for the group fed the 10 percent level of Gracillaria gum.

Diat Gesignation	Moan dally galn	Coorfiolont or variation	Par-gram gatn in moight			
			$\begin{aligned} & \text { Moan } \\ & \text { food } \end{aligned}$	Coorficiont of variation	$\frac{\text { Moras }}{\text { wator }}$	Coofflolent of varistion
Control	$\frac{\mathrm{grama}}{3.48}$	$\frac{\text { percont }}{11}$	$\frac{\text { Brame }}{2.92}$	$\frac{\text { parcont }}{6}$	$\frac{\text { aL1111ters }}{5.76}$	$\frac{\text { percent }}{19}$
$\frac{\text { Gracillaria: }}{5 \text { percent }} \begin{gathered} 10 \text { percent } \end{gathered}$	$\begin{aligned} & 3.41 \\ & 3.35 \end{aligned}$	$\begin{array}{r} 7 \\ 12 \end{array}$	3.08 $3.21 *$	5	5.42 6.31	12
Carboxymethyloellulose: 5 percent	3.26	18	3.16	13	no data	no date

OBSERVATIONS ON ANIMAL FEEDING TESTS

The coefficient of variation of mean weekly food intake for the group of rats fed carboxymethylcellulose is nearly twice that of the groups fed Gracillaria gum. The greater variation apparently was due to what seemed to be diarrhea. The smeary feces were very characteristic but did not seem to be a symptom of an injurious process. It was most probably due to the low absorption quality of the purified diet. One litter of five rats was allotted to a group fed a mixture of 5 percent carboxymethylcellulose and 95 percent ground Purina Dog Chow by weight. These rats were fed the diet for a month. They did not grow as well as the rats fed the same gum in the purified diet, but the feces were firm in texture and well formed.

Gross necropsy studies of the rats fed the 10 percent level of Gracillaria gum at the close of the 10 -week test did not reveal any pathology. The remain-
ing animals were fed the diets for a year (the rats fed the 5 percent level of carboxymethylcellulose), or until they died. The comparative data calculated for the 10 -week period indicate that both gums were wholesome.

The data in Table 2 show that the various animals receiving the 5 percent levels of Gracillaria gum or carboxymethylcellulose lived as long as the respective control animals. Those which died and upon which a post-morten examination could be made did not show any gross symptoms characteristic of any toxic condition. The data in Table 3 indicate no statistically significant differences between groups in mean maximum weight, mean weekly intake of food, or mean weekly intake of water where comparisons are possible.

The rats fed the 5 -percent level of carboxymethylcellulose were sacrificed after one year and the principal organs were examined microscopically. The pathologist found no evidence that the carboxymethylcellulose produced any specific uniform change in the heart, liver, kidney, spleen, or gastrointestinal tract. There was no evidence of gross pathology when the rats were sacrificed.

CONCLUSION

In summary, the data indicate that both the Gracillaria gum and carboxymethylcellulose are wholesome products when fed to rats and mice in comparatively large quantities for periods from weaning to death.

LITERATURE CITED

NILSON, HUGO W. AND LEMON, JAMES M.
1942. METABOLISM STUDIES WITH ALGIN AND GELATIN. U. S. DEPARTMENT OF THE INTERIOR, FISH AND WILDLIFE SERVICE, RESEARCH REPORT

NO. 4: PP. 1-9.

PHARMACOPOEIA OF THE UNITED STATES
1947. THIRTEENTH REVISION. MACK PUBLISHING COMPANY, EASTON, PA., P. 721.

[^0]: *PHARMACOLOGIST, FISHERY TECHNOLOGICAL LABORATORY, BRANCH OF COMMERCIAL FISHERIES, U. S. FISH AND WILDLIFE SERVICE, COLLEGE PARK, MARYLAND.

