

Additions to the Fleet of U. S. Fishing Vessels

A total of 98 vessels of 5 net tons and over received their first documents as fishing craft during June 1951-7 more than in June 1950. Washington led with 32 vessels, followed by California with 13 vessels, and the west coast of Florida with 7 vessels.

A total of 462 vessels were documented for the first time as fishing vessels, during the first six months of.1951, compared with 442 vessels for the same period during 1950.

Section	June		Six mos, ending with June			$\begin{aligned} & \text { Total } \\ & 1950 \end{aligned}$
	1951	1950	1951		1950	
	Number	Number	Number		Number	Number
New England	5	3	20		18	36
Middle Atlantic	1	3	21		27	45
Chesapeake Bay .	5	10	11		41	81
South Atlantic	15	13	58		74	153
Gulf	15	19	101		84	167
Pacific	49	35	191		132	231
Great Lakes	2	2	9		6	12
Alaska	6	6	50		60	83
Hawail	-	-	1		-	4
Total	98	91	462		442	812
NOTE: VESSELS HAVE BEEN ASSIGNED	to the varis	ARIOUS SE	CTIONS ON	E basis	OF THEIR H	PORT.

Alaska Abalone Explorations

Explorations for abalone in southeastern Alaska will be conducted by a chartered vessel under the direction of the Service's Branch of Commercial Fisheries. Beginning on September 15, the abalone survey was to cover as much of the Gulf of Esquibel and Sea Otter Sound areas as facilities and time would allow. Explorations will be continued during October in adjacent waters. If it is possible to complete the work in these areas and if the weather and other factors permit, some exploration may be possible in the areas near Trocadero Bay and Cordova Bay.

An experienced abalone diver has been employed and his boat Lady Bess has been chartered. Most of the work will be concentrated in the range from the beach to 60 -foot depths. Possibly some deep dives up to 100 feet will be made if conditions permit. There have been some indications that abalone may be abundant in certain areas in southeastern Alaska, and considerable interest has been shown in a survey of this species of shellfish.

A chemist from the Service's Fishery Froducts Laboratory at Ketchikan, operated by the Fish and Wildlife Service and the Alaska Fisheries Experimental Commis sion, has joined this exploratory expedition to assist in the collection of data and samples. Methods of handling, preserving, and freezing the abalone will be studied aboard the boat and at the Ketchikan Fishery Products Laboratory and at the Service's Seattle Fishery Technological Laboratory.

It is hoped that these explorations will indicate whether or not a commercial off-season fishery for abalone is feasible in Alaska.

Alaskan Fishery Products Diverted at Prince Rupert, B. C., for Consumption in Canada

Each year sizable quantities of fish products are shipped from Alaska to the United States through the Canadian port of Prince Rupert, B. C. Upon arrival at Prince Rupert, same of this fish is temporarily warehoused there pending resumptic of transportation by rail to the United States. At times some of these fishery products are sold in Prince Rupert for consumption in Canada. Such diversions of fish to Canada have not previously been reflected in the statistics on UnitedState exports to Canada. Since fish is apparently being diverted to Canada on a more or less continuing basis, provisions have been made by the Bureau of the Census where such fish shipped from Alaska to the United States, but subsequently diverted for Canadian consumption, will be reflected in the current statistics on United States exports to Canada. The figures for such fish diverted for Canadian consumption dur ing the years 1947 to 1950 inclusive are as follows:

Year	Schedule B Commodity Number	Commodity Description	Quantity	Value
1950	$\begin{aligned} & (007000 \\ & 1007109 \end{aligned}$	$\begin{aligned} & \text { Fresh or frozen: } \\ & \text { Salmon } \\ & \text { Sable } \end{aligned}$	$\begin{aligned} & \frac{16 s .}{17,070} \\ & 13,400 \end{aligned}$	$\begin{array}{r} \hline \frac{\phi}{\underline{p}} \\ 3,755 \\ 640 \\ \hline \end{array}$
1949	1007000	Salmon	564,740	141,185
	$(007109$	Halibut	4,450	646
	1007109	Sable	10,050	503
1948	007000	Salmon	180,843	45,211
1947	007000	Salmon	7,194	2,250

The issues of Foreign Commerce and Navigation for the years listed will include these exports, but revisions to include them in statistics for previous year are not being made at this time.

Federal Purchases of Fishery Products

FRESH AND FROZEN FISH PURCHASES BY DEPARTMENT OF THE ARMY, JULY 1951: Purchases of $2,675,231$ pounds of fresh and $\frac{\text { frozen fishery products } \frac{\text { for the military }}{} \text { for }}{}$ feeding of the U.S.Army, Navy, Marine Corps, and Air Forces were made during July 1951 by the Army Quartermaster Corps (see table). These purchases declined 12.9 percent in quantity and 8.5 percent in value as compared with the previous month. The quantity and value of the July 1951 purchases were substantially abowe those of the corresponding month of 1950-101.8 percent and 124.6 percent, respectively.

A comparison of the purchases for the first seven months of 1950 and 1951 shows that in the latter year there was an increase 124.6 percent in quantity and 124.3 percent in value.

$\frac{\text { Q U A }}{\text { July }}$		T I T Y		∇ A L U E					
			uly	January	y-July				
		1951	1950	1951	1950	1951	1950		
$\frac{16 s}{2,675,231}$	$1,326,003$			$17,2 \frac{1 \mathrm{bs} .}{73,920}$	$\frac{\text { 16s. }}{7,692,427}$	$\begin{gathered} \$ \\ 1,185,523 \end{gathered}$	$\begin{gathered} \hline \$ 12 \\ 527,611 \\ \hline \end{gathered}$	$\begin{gathered} \$ \\ \hline 7,218,841 \end{gathered}$	$3,219,055$

Freezing-Fish-At Sea Technological Studies

REFRIGERATION MACHINERY TESTED BY "DELAWARE" (Cruise No. 3): The trawler Delaware returned to its base at East Boston, Mass., on September 5 from the second joint cruise by the Branch of Commercial Fisheries and the Branch of Fishery Biology.

Leaks that developed in the brine-cooler unit of the refrigeration machinery room aboard the vessel were located during the cruise and repairs made. Fish caught in the census trawls are being used on shore on experiments for the freez-ing-fish-at-sea project:

Gulf Exploratory Fishery Program

EXPERTMENTAL SHRTMP TRAWLS TESTED BY "OREGON" (Cruise No. 10): Tests on experimental shrimp trawls were made of the Mississippi coast by the Oregon, the Service's Branch of Commercial Fisheries vessel conducting fishery exploratory work in the Gulf. These tests were conducted from August 7 to August 10.

The Oregon left Pascagoula August 14 for the Gulf of Campeche, passed south of the path of the hurricane of August 19-21, and returned to Pascagoula on August 30.

The chief objective of the trip was to explore the offshore waters along the west coast of the Yucatan Peninsula outside of the areas now being worked by the shrimp fleet and to continue testing experimental gear in areas with poor trawling bottom.

A total of 37 shrimp trawl drags, 35 bathythermograph stations, and 1 handline fishing station were made. All three commercial species of shrimp were found in different areas. Pure catches of brown-grooved shrimp (Penaeus aztecus) were made off Carmen in 22 to 30 fathoms. On the other hand, the grounds off Campeche Fielded about 98 percent pink-grooved shrimp (Penaeus duorarum), and 2 percent white :shrimp (Penaeus setiferus).

Trawling with conventional gear produced large quantities of trash, principally isholl, throughout the area of the present fishery. Experimental trawl drags elimimated the major part of the trash catch in a series of 27 comparison stations.

Snapper exploration was limited due to lack of time. At the few rocks and lumps visited, results were poor.

A single bluefin tuna weighing about 12 pounds was taken on a feather 11 g at latitude $25^{\circ} 50^{\prime} \mathrm{N}$. longitude $90^{\circ} 08^{\prime} \mathrm{W}$. on August 15. In this vicinity, six trolling rigs were lost but there was little surface evidence of tuna, On August 29 tuna were sighted early in the morning at about latitude $26^{\circ} 12^{\prime} \mathrm{N}$. Iongitude $89^{\circ} 34^{\prime}$ $W_{\text {. and }}$ schools were under observation throughout the day's run to about latitude $28^{\circ} 00^{\prime} \mathrm{N}$. longitude $89^{\circ} 05^{\prime} \mathrm{W}$. The fish appeared to be mostly the $30-$ to 70 -pound size range and probably not all of one species. Most of the fish were wild but some jumped within a few feet of the vessel. None were taken with trolling gear,
\# * * \#
"OREGON" TO TEST SHRIMP TRAWLING GEAR: The first few days of Cruise No, 10 of the Service's exploratory fishery vessel Oregon will be spent in waters off Pascagoula testing shrimp fishing gear. The vessel left Pasagoula on August 7 and was expected to return August 31.

During this time the Oregon will remain near the chartered vessels Helen Coopen and Harbor Light to observe and assist in trials of $\mathrm{ml} d$-water trawls.

The Oregon will then proceed to the Campeche area to explore bottams in aress not presently being fished by the shrimp fleets.

In addition, as time permits, observations will be made on deep-water snapper fishing with electric reels.

Middle and South Atlantic Tuna Explorations

LITMLE TUNA EXPLORATIONS BEGUN BY "ATLANTIC EXPLCRER" (Crulse No. 1): EXplorations for little tuns (Euthynnus alletteratus) are being conducted along the Atiantic Coast under a cooperative arrangement between the U. S. Fish and WildIife Service, the Blue Channel Corporation, and the Woodcrest Fisheries, the latter two both of Beaufort, South Carolina. The M/V Atlantic Explorer, the vessel being used for these explorations, is a 104-ft. boat wich has been converted to operate a Pacific Coast-type purse seine.

The purpose of the explorations is to determine if little tuna can be taken in commercial quantities with a modified version of the Pacific Coast tuns purse seine. The seine is 300 fathams long by hung measure and $4 \frac{1}{2}$ strips, or approximately 22 fathoms in depth. The hanging proportions of the seine are according to conventional Pacific Coast standards, but because of the shallow water in which the little tuna are expected to occur, the net is lightly leaded. A 1,500-pound purse weight will be used to keep the breast lines close together while pursing and to cause the lead line to tend bottom while pursing.

The inftial shakedown cruise of the Atlantic Explorer started August 22 and was terninated on September 7. The exploratory effort was devoted to the ares between Port Royal Sound, South Carolina, and Cape Canaveral, Florlds, but the work was interrupted to a considerable degree by mechanical difficulties.

The great abundance of surface schools observed during late July and early August were not in evidence. Only one set was made, which ylelded only about 500
pounds. Because of the inexperience of the crew and the difficulty in getting the seine started overboard, the main school was missed and the fish caught were presumed to be stragglers. Schools of little tuna were seen on several other occasions, but they disappeared before the vessel could be maneuvered to a setting position.

Previous to the start of work by the Atlantic Explorer, explorations were conducted with trolling gear from Fort Pierce, Florida, to Cape Hatteras, North Carolina. This work during June, July, and August revealed little tuna to be widely distributed throughout the area, but only a few surface schools were seen until about mid-July. From then until mid-August, numerous surface schools were seen between St. Augustine, Florida, and Brunswick, Georgia.

The Atlantic Explorer departed on Cruise No. 2 from Beaufort, South Carolina, on September 13 to conduct exploratory fishing between Port Royal Sound and Morehead City, North Carolina. If little tuna cannot be found in this area and schools are reported elsewhere, the locale of the exploratory work will be modified accordingly.

North Atlantic Fishery Investigations

SECOND PHASE OF GEORGES BANK FISH CENSUS COMPLETED: The second phase of a census of fish populations on Georges Bank was completed by the Service's Branch of Fishery Biology. The Delaware, an experimental trawler operated by the Branch of Commercial Fisheries to conduct freezing-fish-at-sea studies, was used. The vessel returned to Boston on September 5 after occupying 47 stations in subareas XII G and 0 .

Sampling a grid pattern of stations and concentrating tows in areas where relatively large concentrations of haddock were found, revealed the existence of a large concentration of haddock in the area of the bank known as the South Channel. 'This area was approximately eliptical in shape with an east-west diameter of 35 imiles and a north-south diameter of 15 miles and centering at $47^{\circ} 15^{\prime} \mathrm{N}$, and $69^{\circ} 00$, W. The depth of water in this area ranged from 50 to 75 fathoms.

In addition to data on size and numbers of all species of fish, 39 bathythermograph casts were made and 28 bottom samples were obtained.

North Pacific Exploratory Fishery Program

"JOHN N. COBB" TO INVESTIGATE COMMERCIAL DEEP-WATER TRAVILING OFF WASHIHGION AND OOPRGON: In order to investigate the commercial abundance and varieties of bottom fish in the deep waters off the coasts of Washington and Orecon, the Service's exploratory fishery vessel John N. Cobb left Seattle about August 27 on the first oof a series of planned cruises. On this cruise (No. 9) the vessel is scheduled to survey by trawling the region off Cape Flattery and ad, iacent waters at depths bettween 100 and 500 fathoms (500 fathoms is more than half a mile deep). A special mattempt will be made to determine the abundarce of Pacific ocean perch (Sebastodes) alutus) in these waters.
 used in the commercial fishery in Washington will be used by the vessel. Two traml cables, each $\frac{1}{2}$ inch in diameter and more than a mile in length, will be used to reach the depths to be fished.

COMMERCIAL BOTTGM FISH LOCATED BY "JOHN N. COBB'S" DEEP -WATER TRAWLING OPRRAT? The Fish and Wildlife Service exploratory fishing vessel John \mathbb{N}. Cobb was engaged in otter trawl fishing in deep waters of the coast of Washington during September. Results fram the first portion of the trawl operations have indicated the presence of commercial quantities of various bottom fish at depths between 100 and 220 fath

Drags in the deep trough running southwest out of Cape Flattery produced fair quantities of black cod, Dover sole, and Pacific ocean perch. The better drags made in this area yielded 3,600 to 5,500 pounds of bottan fish. These tows were each one hour in duration and were made at depths from 130 fathoms to 186 fathons,

Several tows made at depths from 150 to 220 fathoms, approxdmately 40 mlles west of Lapush, Washington, yielded good catches of Pacific ocean perch and other red rockfish. These drags, also one hour in length, produced from 5,000 to 6,500 pounds of fish.

The catches made at these depths were relatively clean and contained only small numbers of urmarketable scrap fish.

Railroad Freight Rate Increases Affect Fishery Products
Permanent increases in freight rates and charges, effective August 28, 1951, were made by American railroads as the result of a report and order, dated August 2 and issued on August 8, 1951, by the Interstate Commerce Commission. These increases are in lieu of earlier temporary increases granted in I.C.C. Docket $\mathbb{E x}$ Parte 175, and are the result of the Camission's final conclusions fram the proceedings under that docket. Since this is the final decision in this matter, and the increases in rates and charges have now been made effective, those applying to the fishery industries are given in detail.

Basic freight rates and charges, aside from the exceptions listed in onsuing paragraphs, were increased as follows:

$$
\begin{aligned}
& \text { Within eastern territory }-9 \text { percent } \\
& \text { Within southern territory }-6 \\
& \text { " } \\
& \text { Within western territory }-6 \\
& \text { " } \\
& \text { Interterritorially between } \\
& \text { the three territories }
\end{aligned}
$$

By basic freight rates and charges are meant those now in effect, or published to became effective but not yet effective, including the increases or any portion thereof made effective under the authority granted in Ex Parte No. 162, Ex Parte No. 166, and Ex Parte No. 168, and including rates held under investigation and suspension orders, also rates prescribed by I.C.C. orders, when and as such rates become effective, subject to any exceptions specifically made in the orders. However, for the purpose of determining basic rates from such present freight rates
and charges there shall be excluded such portion thereof as represents all increase made pursuant to previous report and order in I.C.C. Docket Ex Parte 175. Any chan
hereafter made in the increases authorized in Ex Parte No. 162, Ex Parte No. 166, or Ex Parte No. 168, whether in pursuance of the undertaking of the petitioners in the proceedings mentioned to restore former competitive commercial relations, and whether done voluntarily or pursuant to orders, directions, or mediatory powers of the Interstate Commerce Commission, will be considered as changing the basic rates, and the amount of the increases authorized in Ex Parte 175 will be modified and applied ratably.

One of the principal exceptions to the aforementioned increases occurred in connection with canned fishery products on which a maximum increase of 6 cents per 100 pounds was effected. If any of the foregoing percentage increases exceed 6 cents per 100 pounds when applied to transportation of canned fishery products, the excess of increase was not authorized, and therefore, the railroads have placedinto effect generally a maximum increase of 6 cents per 100 pounds on shipments of products in this class.

In addition, no increase was made in the charges for protective services as published in Perishable Protective Tariff No. 15, Agent Quinn's I.C.C. No. 26. No increase is effected in amounts paid or allowances made by carriers for drayage or other services performed by shippers or receivers of freight. No increase is effected in charges for demurrage on freight cars and in charges for handling, loading or unloading export, import, coastwise, or intercoastal traffic which do not affect the measure of the line-haul rate and are not in addition to the line-haul rate.

U. S. Pack of Canned Crab Meat, 1950

Canned crab meat packed in hermetically-sealed containers during 1950 in the United States amounted to 137,490 standard cases, valued at $\$ 3,121,269$. This was a drop of 15 percent in quantity and 11 percent in value as compared with the previous year, due mostly to a decline in the Pacific Coast States pack. The 1950 pack was the lowest since 1944.

Crab neat was carnea in 20 plants in Washington, 17 in Alaska, 8 in Oregon, 3 each in Mississippi and Louisiana, 2 each in Maine and California, and 1 each in Morth Carolina, South Carolina, Georgia, and Alabama.

The 1950 Pacific Coast pack (consisting of meat from Dungeness crabs and some lking crabs in Alaska) was valued at an average of $\$ 23.80$ per standard case, comIpared with $\$ 22.18$ the previous year, the record high of $\$ 27.67$ in 1946, and $\$ 7.05$ in 1940. The East Coast and Gulf pack in 1950 (consisting largely of meat from bilue crabs) was valued at, an average record high of $\$ 21.25$ per standard case,
compared with $\$ 20.08$ the previous year, the second highest price of $\$ 21.11$ in 1946 and 9.70 in 1940 (see table 2).

Year	c Coast and Gulf States			Pacifio Coast States and Alanka			T o t a 1		
	Quant1ty	Value	$\begin{array}{\|c\|} \hline \text { Avg. Prico } \\ \text { Por Std.Case } \end{array}$	cuantity	Value	$\begin{aligned} & \text { Avg. Price } \\ & \text { Por Std. Caso } \end{aligned}$	quantity	Value	$\begin{aligned} & \text { Arg. Price } \\ & \text { Por Std. Case } \\ & \hline \end{aligned}$
	Std.Cases ${ }^{1 /}$	\%			$\frac{1}{\mathbf{1}}$	$\frac{1}{1}$	$\frac{\text { Stc, Ceses }}{}$		
1950	58,958	1,252,589	21.25	78,532	1,868,680	$2 \overline{3} .80$	$137,490$	$3,121,269$	22.70
1949	46,975	943,120	20.08	114,854	2,547,765	22.18	161,829	3,490,885	21.57
1948	33,382	581,872	17.43	187,420	4,264,622	22.75	220,802	4,846,494	21.95
1947	33,696	667,487	19.81	106,120	2,037,904	19.20	139,816	2,705,391	19.35
1946	120,150	$2,536,405$	21.11	78,928	2,183, 714	27.67	199,078	4,720,119	23.71
1945	29,788	484,869	16.28	25,726	398,898	15.51	55,514	883,767	15.92
1944	36,386	560,735	15.41	50,556	800,723	15.84	86,942	1,361,458	15,66
1943	26,716	412,310	15.43	48,592	782,173	16.10	75,308	$1,194,483$	15,86
1942	29,656	397,772	13.41	84,892	$1,357,293$	15.99	114,548	1,755,065	15.32
1941	22,494	235,745	10.48	37,704	311,872	8.27	60,198	547,617	9.10
1940	13,486	130,869	9.70	25,254	178,021	7.05	38,740	308,890	7.97
CAS	Of VARIous	SIZES CONV	ED to the equi	ENT OF 48	2. CANS	TO TME CASE.			

U. S. Production of Marine-Animal Oils, 1950

Production of marine-animal oils in the United States and Alaska during 1950 amounted to $21,763,849$ gallons, valued at $\$ 17,472,709$ to the producers-an increas of 23 percent in quantity, but an increase of less than 1 percent in value as compared with the previous year. A considerable drop in the production of liver oils accounted for the fact that the value did not increase in proportion to the total increase in body and liver oil production. Increased production of synthetic vitamin A has adversely affected the market price of liver oils to such an extent that it has become uneconomical for fishermen to fish sharks and dogfish for their liveI

Menhaden oil accounted for 47 percent of the total oil produced and pilchard oil, 28 percent. Body oils obtained from whole fish and fish waste accounted for 98 percent of the total quantity of marine-animal oils produced and 80 percent of the total value. The balance of the production consisted of liver and viscera ofls

Product	Atlantio and oulf coast sf			Paoifio Coast (1n01, A1saka)			I $0 t$ a 1		
	Quantity	Total Value	$\begin{aligned} & \text { Avg. Price } \\ & \text { Per Gel. } \end{aligned}$	Quantity	$\begin{aligned} & \text { Total } \\ & \text { Total } \end{aligned}$	Avg.Price Por Gel.	Quantity	Velue	$\begin{array}{\|l\|} \hline \text { AVg. Price } \\ \text { Por Gel } \\ \hline \end{array}$
Body of1:	Qallons	$\frac{8}{8}$	$\stackrel{5}{1}$	Cellons	3	9	Callons		I
Fur asel	-			41,689	40,079	0.96	41,689	40,079	0.96
Herring	332,023	201,386	0.61	2,977,434	2,164,619	0.73	3,309,457	2,366,005	0.71
Monhadon	10,209,958	5,866,554	0.57		2,164,610		10,209,958	5,866,554	0.57
Pllchard	-	-	-	6,188,607	4,693,550	0.76	6,188,607	4,693,650	0.76
Salmon				122,138	92,555	0.76	122,138	-92,555	0.76
Tuns and mackerel.		9/201 085	-	884,434	553,231	0.63	884,434	553,231	0.63
Miscollaneous	2/446, 432	2/291,985	0.65	$3 / 229,877$	$3 / 137,860$	0,60	676,309	429,645	0.64
Liver \& viscera oil: Cod Shark Sworafich Tuna \qquad Miscellaneous Total Grand total \qquad	10,988,413	6,359,925	0.58	10,444,179	7,681,694	0.74	21,432,592	14,041,619	0.66
	163,859	227,330	1.39	-		-	163,859	227,330	1.39
	4/	$4 /$	-	4/119,324	4/937,360	7.86	119,324	937,360	7.86
	385	30,510	79.25				-385	30,510	79.25
			-	12,714	560,220	44.06	12,714	560,220	44.06
	$5 \sqrt{5}, 347$	5/634,240	118.68	$6 / 29,628$	1,041, 430	35,15	34,975	1,675,670	47.91
	169,591	892,080	5.26	161,666	2,539,010	15.71	331,257	3,431,090	10.36
	11,158,004	7,252,005	0.65	10,605,845	10,220,704	0.96	21,763,849	17,472,709	0.80
1 INCLUDES THE PRODUCTION OF BURBOT -LIVER OIL IN MINNESOTA. 2 INCLUDES BLACKFISH, OCEAN PERCH (ROSEFISH), ANO UNGLASSIFIED BODY OILS. 3 INCLUDES ANCHOYY AND UNCLASSIFIED OIIS. 4. EAST AND WEST COAST PRODUGTION COMBINED. 5 INCLUDES BURBOT, HAKE, HALIBUT, MACKEREL, POLLOCK, WHALE, ANO UNCLASSIFIED LIVER OILS. g/INCLUDES HALIBUT, LING COD, SABLEFISH, LIVER OILS, VISCERA OIL, AND MIXED LIVER OILS.									

Year	Body Oils			Liver Oils			Total		
	Quantity	$\begin{gathered} \text { Total } \\ \text { Value } \end{gathered}$	Avg. Price Per Gal.	Quantity	$\begin{aligned} & \text { Total } \\ & \text { Value } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Avg. Price } \\ \text { Fer Gal. } \\ \hline \end{array}$	Quantity	Value	Avg. Price Per Gal.
	Gallons			Gallons	3,43l				
1950	21,432,592	14,041,619	0.66	331,257	3,431,090	10.36	$21,763,849$	$17,472,709$	0.80
1949	16,860,530	7,519,522	0.45	834,357	9,845,455	11.80	17,694,887	17,364,977	0.98
1948	16,323, 061	$18,449,870$	1.13	722,329	12,411,652	17.18	17,045,390	30.861,522	1.81
1947	15,900,382	20,107,194	1.26	832,510	11,643, 468	13.99	16,732,892	31,750,662	1.90
1946	19,135,051	21,223,098	1.11	895,884	$13,618,549$	15.20	20,030,935	34,841,647	1.74
1945	23,697, 564	16,033,515	0.67	804,288	11,202,207	13.93	24,501,852	27,235,722	1.11
1944	27,324,173	17,771,346	0.65	998,802	$13,237,435$	13.25	28,322,975	31,008,781	1.09
1943	22,264, 362	14,970,884	0.67	851,854	14,841,970	17.42	23,116,216	29,812,854	1.29
1942	19,549,283	12,518,206	0.64	1,029,821	10,061,396	9.77	20,579,104	22,579,602	1.10
1941	28,045,869	$14,719,628$	0.52	1,237,758	$14,874,586$	12.02	29,283,627	29,594,214	1.01

U. S. Production of Marine-Animal Scrap and Meal, 1950

Fish and marine-animal scrap and meal production in the United States and Alaska during 1950 amounted to 239,713 tons, valued at $\$ 29,225,928$ to the producer.

Product	Atlantio and Gule coast 1			Pacific Coast (incl. Alaska)			T Producers)		
	Quantity	Total Value	$\begin{aligned} & \text { Avg. Price } \\ & \text { Per Ton } \end{aligned}$	Quant1ty	Total Value	$\begin{aligned} & \mathrm{Avg} \cdot \operatorname{Prlce} \\ & \mathrm{Per} \text { Ton } \end{aligned}$	Quantity	Value	$\begin{aligned} & \text { Avg. Price } \\ & \text { Per Ton } \end{aligned}$
Blue.	8,631	470,350	54.50	-	-	-	8,631	70,350	54.50
Dungeness			-	199	8,950	45.20	198	8,950	45.20
Fur seal	-	-	-	336	32,790	97.59	336	32,790	97.59
Groundfish (white fish incl. ocean perch)	26,953	3,604,741	133.74	-	-	-	26,953	3,604,741	133.74
Herring	5,484	3,596,410	108.75	12,313	1,542,366	125.26	17,797	2,138,776	120.18
Menhadon	2/103,365	12,864,751	124.46	12,313	,	-	103,365	12, 864,751	124.46
Pllchard		12,864,751	.	43,009	5,269,696	122.53	43,009	5,269,696	122.53
Salmon	-		-	1,401	152,730	109.01	1,401	152,730	109.01
Shrimp ..	1,394	110,360	79.17	1,201	-	-	1,394	110,360	79.17
Tuna and mackerel		110,360	.17	25,377	3,268,594	128,80	25,377	3,268,594	128.80
Miscollanoous	3/5,994	3/761,835	127.10	4/5,258	$4 / 542,355$	103.15	11,252	1,304,190	115.91
Total	151,821	18,408,447	121.25	87,892	10,817,481.	123.08	239,713	20, 225,928	121.92
1 INCLUDES A SMALL PRODUCTION OF MISCELLANEOUS MEAL IN MINNESOTA. $2 /$ SMALL PRODUCTION OF ACIDULATED SCRAP HAS BEEN INCLUDED WITH DRY SCRAP AND MEAL 3/INCLUDES THE PRODUCTION OF COD-LIVER PRESS CAKE, FISH POMACE, HORSESHOE CRAE, AND MISCELLANEOUS SCRAP AND MEAL 4 IINCLUDES THE PRODUCTION OF ANCHOVY, SHARK, AND MISCELLANEOUS' SCRAP AND MEAL.									

Tear	Dry Scrap and Meal			Acid Sorap			T o t a l		
	Quantity	Total Value	Avg. Price Per Ton	Quantity	Total Value	$\begin{aligned} & \text { Avg. Price } \\ & \text { Per Ton } \\ & \hline \end{aligned}$	Quantity	Value	$\begin{aligned} & \text { Avg. Price } \\ & \text { Per Ton } \\ & \hline \end{aligned}$
	Short Tons		\$	Short Tons	\$	+	Short Tons	안	i
1949	-239,713	1/29,225,928	121.92	1			239,713	29,225,928	121.92
1949	$\frac{1}{1 / 237,180}$	1/35,652,142	150.32	$1 /$			237,180	35,652,142	150.32
1948	1/199,519	$1 / 23,086,734$	115.71	$1 /$		-	199,519	23,086, 734	115.71
1947 1946	185,808	22,353,488	120.30	632	26,863	42.50	186,440	22,380,351	120.04
1946 1945	197,599	20,360,943	103.04	2,022	78,475	38.81	199,621	20,439,418	102.39
1945 1944	199,118	14,343,138	72.03	1,557	62,200	39.95	200,675	14,405,338	71.78
944 7943	210,225	15,131,918	71.98	2,922	111,104	38.02	213,147	15,243,022	71.51
1943	188,848	13,570,331	71.86	1,555	58,821	37.83	190,403	13,629,152	71.58
	168,486	11,545,239	68.52	2,594	80,520	31.04	171,080	11,625,759	67.96
	22.5,815	12,852,781	56.92	11,029	242,792	22.01	236,844	13,095,573	55.29
	177,724	7,562,288	42.55	15,520	271,533	17.50	193,244	7,833,821	40.54

= A SMALL PRODUCTION OF ACIDULATED MENHADEN SCRAP INCLUDED WITH DRY SCRAP AND MEAL.

Although the quantity produced increased 2,533 tons, the value of the total production dropped $\$ 6,426,214$ as compared with the previous year, which indicated low prices for all types of scrap and meal. Menhaden scrap and meal production exceed 100,000 tons for the third consecutive year.
NOTE: ALSO SEE COMMERCIAL FISHERIES REVIEW. SFPTFMBER 1950, PP. 32-3.

Utah Gets First Federal-Approved Fish Hestoration Project
Utah has submitted the first project for approval under the terms of the new Dingell-Johnson Act granting Federal aid to the sport fisheries of the country, the Secretary of the Interior announced on September 24 .

Utah's fishery project was received by the U. S. Fish and Wildlife Service on August 9, 1950, the same day President Truman signed the Dingell-Johnson bill, H.R. 6533 , into law. The approval of this project, however, has been held up pending the final passage and signing of the Department of the Interior's appropriation bi for fiscal year 1952 which authorized the appointment of funds to the States for this new activity.

In its first project, Utah will seek data on how much public use is made of the waters of the State. These data can then be used to show the need for modification of fishing regulations and the inauguration of management measures, such a habitat improvement, in order to offer the best possible fishing and at the same time afford the proper protection to this natural resource. Opportunities for future development will be sought and the data obtained from field surveys will be used as a basis for developmental projects.

Utah proposes to find out the extent of the fish harvest taken by anglers, and the economic value of sport fishing to the welfare of the State. Although it is well known that supplying gasoline, boats, motors, tackle, bait, and guide service to fishermen has become a sizable business, Utah intends to find out the exact amount and its impact on the State's economy. The personal interview method, combined with questionnaire cards, will be used in the study.

Funds available under the Dingell-Johnson program are derived from the excise tax on sport fishing equipment, such as rods and reels, artificial lures, and fish creels. For each $\$ 3$ allotted through the Federal Government, the State must contri ute \$l of its own funds. The Fish and Wildlife Service, through its Branch of Federal Aid, administers the program, which includes the apportiorment of availabl money to the States and the review and approval of each project to insure that it meets the standards set by Congress and the Secretary of the Interior. The Servic also administers the outstandingly successful Pittman-Robertson wildlife restoration program which has been operating since July 1, 1938.
NOTE: ALSO SEE PP. 53-4 OF THIS ISSUE.

nis

Wholesale and Retail Prices

WHOLESALE PRICES, JULY 1951: A spurt in the production of groundfish in New England, bigger catches of shrimp in the Gulf and South Atlantic, and good stocks of canned tuna brought prices for edible fishery products during July this year substantially below June levels. The wholesale over-all index for edible fish and
shellfish (fresh, frozen, and canned) for July was 107.3 percent of the 1947 average (see table 1)-1.5 percent below the previous month, but 10.1 percent higher than in July 1950, the Bureau of Labor Statistics of the Department of Labor reports.

Liberal fish landings in New England in July brought the prices for fresh offshore drawn haddock down below those reported in June this year and July 1950. Drawn whitefish receipts at Chicago were fairly heavy in July and prices were substantially below the previous month but still higher than a year earlier. On the other hand, round fresh whitefish receipts at New York City in July were light and prices rose substantially over the previous month and the corresponding month a year ago. Lake trout and yellow pike production in the Great Lakes was light and July prices for these fish were considerably above the previous month and the same morth last year. Salmon prices remained steady at June levels, and dressed fresh or frozen halibut prices in July were slightly above those quoted in June. Mainly due to higher fresh-water fish prices, the drawn, dressed, or whole finfish subgroup index this July was 0.7 percent above the previous month and 2.0 percent higher than in July 1950.

Processed fresh fish and shellfish prices from June to July dropped 2.8 percent, but these prices were 4.8 percent higher than in July last year. Heavier haddock landings in New England brought fresh haddock fillet prices in July 0.5 percent below June, but prices were still 1.6 percent higher than in July 1950. Because of a considerable increase in shrimp production in the Gulf area, freshheadless shrimp prices dropped 5.9 percent from June to July this year and were 4.7 percent lower than in July a year ago.

Processed frozen fish and shellfish prices this July dropped 1.0 percent below June, but were 3.0 percent higher than in July 1950. From June to July this year,
lower prices were quoted for frozen ocean perch fillets (3.5 percent) and for frozen shrimp (0.2 percent). However, while ocean perch fillet prices were 15.6 percent higher than in July 1950, frozen shrimp prices were 5.7 percent lower. In July frozen flounder and haddock fillet prices were reported steady at June levels but while frozen haddock fillets were 3.2 percent below the corresponding month $1 E$ year, flounder fillets sold 23.6 percent higher.

Canned fishery products prices in July continued to drop due to a decline in tuna and salmon. The month's index for this subgroup was 2.6 percent lower than in June, but still 21.7 percent above July 1950. Prices for canned pink salmon from June to July dropped 1.0 percent, but were still 45.4 percent higher than in July 1950. Canned tuna prices in July were 8.3 percent lower than in June and 10. percent below July last year. On the other hand, July quotations for California and Maine sardines were slightly above those reported in June. Compared with July 1950 , prices for California and Maine sardines were higher by 18.0 percent and 15 . percent, respectively.

RETAIL PRICES, JULY 1951: Urban families of moderate incomes paid slightly higher prices for all foods between mid-June and mid-July, according to the Bureau of Labor Statistics, U. S. Department of Labor. The general upward movement in food prices during this period was shown by a 0.4 percent increase in the adjusted retail price index for all foods (see table).

Table 2 - Adjusted Retail Price Indexes for Foods and Fishery Products, July 15, 1951, with Comparative Data

Item	Base	I	N D E X	E S
		July 15,1951	June 15,1951	July 15,1950
All foods...	1935-39 = 100	227.7	226.9	208.2
All fish and shellfish (fresh, frozen, and canned..	do	353.3	356.3	297.3
Fresh and frozen fish.	1938-39 = 100	288.1	291.4	270.0
Canned salmon: pink	do	509.2	571.0	344.8

The mid-July index was 227.7 percent of the 1935-39 average- 9.4 percent above the adjusted retail price index for all foods for the same period of 1950.

Contrary to the increased retail prices paid for all foods, fishery products prices at retail declined between June 15 and July 15. The adjusted retail price index for all fresh, frozen, and canned fish and shellfish went down to 353.3 percent (an 0.8 percent decline), but was still 18.8 percent higher than on July 15, 1950.

Following the pattern of the wholesale fish index, the retail fresh and frozen fish index dropped 1.1 percent between mid-June and mid-July to 288.1 percent of the 1938-39 average, but this index was still 6.7 percent above the same period a year earlier.

Retail prices for canned pink salmon broke for the second month, with the index reported at 509.2 percent of the 1938-39 average. This 0.4 percent decline from the previous month probably occurred in anticipation of the new salmon pack, However, the July 15 adjusted retail price index for canned pink salmon continues 47.7 percent higher than the corresponding 1950 period.

