
Shaping and Assembling Webbing

CONRAD W. RECKSIEK

Figure I.-Representative diagonal cuts, or tapers, in
webbing. The tapered edges are drawn as heavy solid
lines, with knife paths across the cut strands drawn as
dashed lines. Body cut A to B forms bars and points; jib
cut E to F forms bars and meshes. Note how tapers are
described in traditional terms (2 bars I point) and as an
integer sequence 0,3.3,3).

characteristics in a standard numerical
shorthand.

Other potential applications of auto­
mating the calculations include devel­
opment of computerized graphics rou­
tines whic~1 display web sections. An
immediate and straightforward applica­
tion of such graphics routines is to
quickly and easily draw net plans which
show every mesh. Being able to make
similar dis)lays in three dimensions is
an initial step in visually portraying the
response of a net section in numerically
modeled flows. One can also envision an
application where a computer would
control a net making machine. This
would permit a manufacturer to supply
orders for "pre-shaped" sections.

There is a body of literature on the
tapering of webbing. Exemplary works
are by Garner (1981, 1973), Libert and
Maucorps (1978), Nedelec (1975), and
Hillier (1981). The first three use a sys­
tem based on "meshes lost or gained" in
which a table of cutting rates is pre-

Introduction

In this paper I present a simple
method for reckoning a taper in web­
bing. I also present methods for cutting
out and assembling trawlnet sections.
Using techniques of whole number
arithmetic, and by considering various
"whole number properties" of webbing
(or similar grid, e.g., a checkerboard),
the novice should be able to cut out and
assemble trawlnet sections from a tradi­
tional net plan. The methodology pre­
sented here should be applicable to most
operations involving tapering of nets.

I wrote this paper to describe the web
shaping process in completely numeri­
cal terms so the various associated calcu­
lations could be made with a computer.
By using the principles described here,
the net designer and builder can create
their own algorithms and program the
various personal or business microcom­
puters available today to perform calcu­
lations to suit their own specialized re­
quirements.

A companion article entitled "A
microcomputer program for the calcula­
tion of a trawlnet section taper" (Martin
and Recksiek, 1983) illustrates such a
program. Most such programs would
input dimensions or tapers and output an
unknown dimension or taper. For in­
stance, a routine to calculate trawl net
belly section tapers would take the
number of meshes on the "wide end,"
the number of meshes on the "narrow
end," and the number of meshes in depth
as input, and present, as output, the taper
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sented. Each tabular element can be as­
sociated with certain gains or losses of
meshes and the correct taper reckoned
accordingly. Hillier (1981) presented a
special series of tapering formulae
which can be applied to most tapering
problems. Hillier's method is well
known and applied in the United States.

A traditional terminology exists to de­
scribe the tapering of webbing. In this
paper I will use that of Hillier (1981).
Figure I illustrates a rectangular section
of webbing in which tapered cuts have
been made. The terminology distin­
guishes between cuts according to which
side of the "diagonal" they are on. Cuts
above the diagonal are termed body cuts.
These are said to be formed of bars
(single cut strands) and points (two cut
strands). Similarly, the taper below the
diagonal, a jib cut, is said to be formed
of bars and meshes.

Exemplary tapers are depicted in Fig­
ure I. Body cut A to B consists of four
sets of 2 bars I point; jib cut E to F

F
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Table 1. - Summary of notation and equations used in the determination of body-cut
net tapers. For explanation see text.

consists of seven sets of 2 bars I mesh;
bar cut C to D consists of all bars.

The distinction between body cuts
and jib cuts is important. The points of
the body cut form sider knots, while
meshes of the jib cuts form pickups.
Thus the orientation of the webbing, or
"run of the twine," must be considered.
In this paper, the run of the twine wi II be
assumed to be from top to bottom. (Ac­
cording to Libert and Maucorps (1978),
page 5, the "run of the twine" is side to
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Figure 2. - Steps required to
achieve tapers. Tapering webbing
is analogous to stepping across a
grid or checkerboard. To reach
meshes Band D from starting
mesh A, exactly 14 and 13 steps,
respectively, are required regard­
less of the path. Various paths are
illustrated here by numbering
steps.

B
23456769C

minology and the tapering principles.
Essentially, I describe the rationale be­
hind various tapering formulae. The
reader should consult Table 1 where the
important equations and notations are
summarized. In the next section I de­
velop Table I equations (1.2) through
(10.1), Table I equations (11.1) through
(15.1) are used to calculate tapers and
dimensions of webbing pieces used in
building trawlnets. These are explained
in subsequent sections of this article.

At this poi nt, after reviewing Table 1,
I encourage the reader to skim the Fig­
ures, particularly Figures 8-15 on pages
33-40. They should convey an impres­
sion of what the fundamental principles
in the next section are leading toward
and clarify the uses of some of the nota­
tions summarized in Table I.

Reckoning the Taper

Tapering a piece of netting is analo­
gous to stepping across a grid or check­
erboard, A taper can be considered to be
a pathway (really made of knife cuts)
across the grid formed by the knots and
strands of webbing. In Figure 2, two
separate pathways from A to exemplary
end meshes Band D are illustrated. To
reach point B, one "steps" either "up­
ward" or along the diagonal. To reach D,
one "steps" either "sideways" or along

Double-taper wing for·
mula used fa deter­
mine either m 1 or m2:
e, meshes across nar­
row end; k, meshes
across wide end; m 1

and m 2 , horizontal dis­
tances for each taper.

Wing formula used to
determine m e,
meshes across narrow
end: k, meshes across
wide end: n, depth or
vertical distance; m,
horizontal mesh dis­
tance.

Belly top formula used
to determine m t,
meshes across lop, or
wide end; k. meshes
across baHam, or nar·
row end; m, horizon­
tal mesh distance of
taper.

General case of T ~

U(S-1)+R(S) where
F is a common factor
of U and R, and U'
and R' have no com­
mon factors.

t

\]

m,

e

LJ

General tapering for­
mula: U and R, points;
S, steps/point; T, total
steps.

Number of points in a
net taper: n, mesh dis­
tance vertically; m,
mesh distance hori·
zontatly.

Alternative form of the
general tapering for­
mula. P, points; S,
steps/point; R. steps
remainder (this ex­
pression is equivalent
to T ~ U(S-1)+R(S)
by letting P ~ (U+R).

Explanation

Total steps across a
net: n, mesh distance
vertically; m, mesh
distance horizontally.

side, The reader should use caution in
comparing references.)

I present here a method of reckoning
tapers based upon arithmetic and simple
algebra. This development does not
exactly match the traditional twine ter­
minology, so I will introduce a few new
terms. I will, however, describe opera­
tions in traditional terms for purposes of
comparison.

In the next section of this paper, Re­
ckoning the Taper, I present new ter-

e~(k-n)+m

t ~ (2m-2)+k

T ~ F [U'(S-I)+R'(S)]

Steps ~ n -m-1

e ~ (k-m,)+m,
m 1 >m 2

Points:::: n -m +1

Equation

T ~ U(S-l)+R(S)

T ~P(S-l)+R

(15.1)

(10.1)

(111)

(13.1)

(6.1)

(1.3)

(2.1)

(1.2), (6.6)

Text
equation
numbers
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B B

where

T = U (5-1) + R(5) (1.2)

Figure 4.-Alternative ta­
pers for the body cut A to
B: 3,4,3,4, solid line; 4,
3,4,3, dashed line. A total
of 14 steps are taken re­
gardless of which pathway
or taper is used.

A123456789

The total number of steps across the
web to form the taper must first be
known to reckon the taper. Finding the
total number of steps is the first stage in
what ultimately will result in the final
sequence of integers given by equation
(1. 2). The total number of steps is a
simple sum of meshes "up" and diag­
onally for a body cut ("sideways" and
diagonally for a jib cut).

Specifically, for a body cut where
points and bars are formed, in finding
total steps, one needs to know a vertical
distance (expressed as grid steps), n, and
a horizontal distance, m, from the start­
ing mesh (or square). The distances n
and m are represented in Figure 5. Note,
when examining this figure, that two
situations are possible: I) When nand m
are both whole numbers, as in 5(a) and
2) when m and n are both whole num­
bers plus one-half, as in 5(b). Note that
in the latter case a three legger must
occur somewhere in the tapered piece.
This characteristic is important and will
be discussed in detail later.

In any event, for a body cut, total
steps are given by:

Steps = n+m -1. (1.3)

This equation holds for jib cuts except
that the roles of m and n are reversed,
i.e., m refers to the vertical distance,
n to the horizontal (see Figure 5, jib
cuts A to D).

[ 3J2 steps
GOintJ per

POint

[ 4~2 steps I I
GOintJ p~r . ( . )

POint

+

Once the taper is expressed in this
form, an integer sequence which speci­
fies the cut follows immediately. This
sequence has the following general
form: (5-1)\, (5-1)2' (5-lh,····
(5-l)u, 51' 52, 53'" .. 5R .

Although equation (1.2) is not "very
compatible" with traditional twine ter­
minology, it should be noted that 5-1
and 5 are the number of strands cut in the
diagonal direction below each point (for
body cuts). For example, for the body
cut A to B in Figure 3, note that 5 = 4
and that 5 -I = 3. To make the taper,
one would cut 3 strands along the
diagonal, cut the upper right strand to
form the point, cut 4 more strands along
the diagonal, cut the upper right strand to
make the second point, etc.

T = total steps,
U and R = points, and

5 = steps/point.

That is, the sum of the integers in the
sequence 3,4, 3, 4 is equal to the total
number of required steps across the web.

Equation (1.1) is an example of the
fundamental tapering algorithm or rule
being presented in this paper. This
whole-number expression simply writes
the total number of steps across the grid
in the form:

14 steps =

strands to cut to form the taper). In Fig­
ure 4, alternative paths are diagrammed.
In this particular case, one could have
structured the taper as 3, 4, 3, 4 or 4, 3,
4,3. In fact, the sequences 4, 4,3,3 or
3,3,4,4 could also have been used, but
then the taper would lack "symmetry."

Referring to Figure 4, we could ex­
press the body cut A to B, 3, 4, 3, 4 as
follows:

D

Figure 3. - Steps across webbing
with tapers indicated: Body cut A
to B, solid line; jib cut A to D,
dashed line.

A12345689

the diagonal. Note that exactly the same
number of steps (14) are taken to reach
point B from A. No matter how one
proceeds across the grid in the direction
of B (up and diagonally), 14 steps are
required. Likewise, to reach D, 13 steps
are required (sideways and diagonally).
And, to reach C, exactly 17 steps along
the diagonal are required.

Many pathways (cuts) across the grid
(web) are possible. Our task is to present
rules to traverse the web in as straight a
path as possible. In Figure 2, the path
from A to C will be perfectly straight,
whereas other paths, say from A to B,
will involve moving along the diagonal
and moving upward.

In Figure 3, an exemplary grid is pre­
sented where steps across are subtended
by darkened lines which represent fin­
ished edges of a taper. Here, the tapers
lack the uniformity of those in Figure 1.
For example, the taper A to B mixes cuts
of 4 steps per point with cuts of 3 steps
per point in a sequence 3,4,3,4. This
would be a body cut of 2 bars I point and
3 bars I point. Expressing the taper as a
whole-number sequence, and not as a
traditional mix of bars and points, is the
heart of the tapering principle being pre­
sented here. Expressing the tapers as a
sequence of numbers turns out to have
the advantage of expressing both simple
and complex tapers in an easy and
straightforward manner.

Alternative tapering paths across the
webbing may exist (i.e., there may be an
element of choice in selecting which
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Points = n-m+l, (2.1)

(3.5)

(3.6)

I 4 l [st;p~
l£oint~ per

POIDt

+ Gt;p~

(separate terms)

(modify first term)

(fundamental expression)

14 steps =

14 steps = ~ pointIl [3 steps]
leer pom!J

+ [? steps remainde!J. (3.4)

Note that the taper, so far, consists of 4
sets of 3 steps/point with 2 steps left
over. Numerical manipulation is now
necessary to remove the remainder and
express the taper in the form of equation
(1.2). If one were to "modify" equation
(3.4) so that the 2-step remainder were
"absorbed" into the expression, a taper
would be described. This process in­
volves expressing the factor n-m+l (4
in this example) as a sum of two num­
bers, one of which is the remainder. This
is illustrated as follows:

(3.3)
14 steps

4 points

steps (3.1)
points (or meshes)

n+m-I

n-m+l

n+m-I

n-m+l

is sufficient to numerically describe
tapers.

Once steps and points (assuming a
body cut) are determined, one can ex­
press the taper through some simple
arithmetic in the form

total steps = [point~ ~tep~
lEom~

+ ~teps remainde~. (3.2)

For the jib cut A to 0:

For example, in Figure 5(a), in tDe

body cut A to B we have

With 4 as a divisor of 14, the largest
whole number quotient is 3 where 3 x 4
= 12. With 2 steps remainder, one can
write:

n+m-I = 9Vz+5 1/z-1 = 14 steps (2.8)
and
n-m+1 = 9'/z-5Vz+l = 5 meshes.(2.9)

Therefore, the equation

Meshes occur at steps 3, 5, 8, IO and
13.

Now consider Figure 5(b). Here, ta­
pers A to B and A to 0 end at half-mesh
distances. For the body cut A to B:

Observe that points occur at steps 3, 7,
IO and 14.

For the jib cut A to 0:

n+m-I = 91/z+61/z-1 = 15 steps (2.6)
and
n-m+1 = 91/z-61/z+1 = 4 points.(2.7)

n+m-l = 9+5-1 = 13 steps (2.4)
and
n-m+1 = 9-5+1 = 5 meshes. (2.5)

n+m-I = 9+6-1 = 14 steps (2.2)
and
n-m+1 = 9-6+1 = 4 points. (2.3)

Th,ee­
legge,

Figure 5.-(a) Illustration of mesh
distances nand m. For a taper involv­
ing points, A to B, n is the vertical
distance, whereas for a taper involv­
ing meshes, A to D, n is the hori­
zontal distance. (b) Illustration of the
terminal mesh (B and D) being a frac­
tional distance in meshes from the
column n (for points) or row n (for
meshes). Note three-leggers in the
finished pieces. Note that (a) is
analogous to stepping from a black
to a black square, A to B and A to D,
on a checkerboard, while case (b)
is analogous to steppi ng from a
black square to a red one, A to Band
A to D.

Having determined the total number
of steps as a sum of mesh distances
(equation (1.3)), one next determines
the number of points (or meshes)
which will be formed in the taper. For
body cuts, this is given by the equation:

and, as with equation (1.3), the roles
of nand m are reversed for jib cuts.
To illustrate total number of steps to­
gether with the number of points (or
meshes), consider Figure 5(a). For the
body cut A to B:

(a)

n=9 r,
Th'ee-
legge,

(b)

0
n=91-
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For Figure 5(b) and for the body cut
A to B we have

= (2)(2) + (3)(2)+(3)(1) (4.5)
(recombine terms)

= (2+3)(2)+3 (4.3)
(modify first term)

13 = (5)(2)+3 (4.2)
(fundamental equation)

(6.6)= U(S-I)+R(S)

where T = total steps,
P = points,

S -I = steps/points, and
R = steps remainder.

T=P(S-I)+R, (6.1)

T=(U+R)(S-I)+R, (6.3)

T = (P-R+R)(S-I)+R, (6.2)

= (1+3)(3)+3 (5.2)
(modify first term)

= (1)(3)+(3)(3) +3 (5.3)
(write separate terms)

then
T = U(S-I)+R(S-I)+R (6.4)

= U(S-I)+R(S)-R(l)+R (6.5)

If one rewrites equation (6. I) as

= (\)(3)+(3)(4) (5.5)
(complete manipulation).

and letting U = P -R and

= (1)(3)+(3)(3)+(3)(1) (5.4)
(recombine terms)

This indicates a body cut of 4,4,4,3 or
3,4,4,4. Note again that a three-Iegger
has been drawn in the upper left corner
of the tapered piece. Note the three­
Iegger in the jib cut piece also.

In a sense, tapering an exact mesh
distance as in Figure 5(a) is akin to mov­
ing from a black square to a black square
on a checkerboard. When tapering to a
mesh which is a half-mesh distance
away, as in Figure 5(b), one has a situa­
tion similar to moving from a black
square to a red square.

The process just described can be
generalized. Equations (6.1) through
(6.6) show the general processes illus­
trated in equations (3.3) through (3.10),
(4.0) through (4.6), and (5.0) through
(5.5). We begin by writing total steps as:

and
15 = (4)(3)+3 (5.1)

(fundamental equation)

(5.0)
15

4

9'/2 +6'/2 -]

9'/2 -61/2+ I

n+m-l

n-m+1

n+m-I 9+5-1 13 steps
--- (4.0)

n-m+1 9-5+1 5 meshes

or, in the form of equation (3.2),

~2J5 steps
13 steps =

GesheJ per
mesh

+ Gt~pJ' (4.1)

Leaving out the units for brevity, the
process is as follows:

= (2)(2)+(3)(2) +3 (4.4)
(write separate terms)

This expression now indicates a se­
quence of 3, 2, 3, 2, 3 (as in Figure
5(a), A to D).

= (2)(2)+(3)(3) (4.6)
(combine last terms to com-

plete arithmetic).

This is in the form of equation (1.2). A
taper sequence of 3,3,4,4 is now indi­
cated. For symmetry, one would cut the
taper at 3, 4,3,4 or 4,3,4,3. Inciden­
tally, an algorithm for explicitly specify­
ing the sequence will be presented later.
Anyway, equation (3.10) indicates a
taper of the pattern 2 bars I point, 3 bars
1 point repeated twice.

To illustrate reckoning a jib cut,
consider A to 0 in Figure 5(a):

(Recombine terms and rewrite
the remainder in the unit
"points x steps/point").

t;"~ r,~:,~i
~ ~OlnJ

+ ~I 2l [t~p~LEoin~ p~rPOint

+ I 2 l [st~pJi (3.8)LE0lnt:j per
point

+ I ~ l ~t:PJ' (3.10)1.£01nt:J per
point

14 "ep' = rGo;"~ r,~:,~
~ ~o,dJ

+~12 l [t~p~l£oint~ per
POint

+ ~~ (3.91

I 2l ~t~PJ1.£0int:J p~rPOint

Note that the last two terms share a
common factor, 2 points. These there­
fore can be combined to write the equa­
tion in final form:
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B C

Figure 6. - Exemplary tapers illustrating
use of the general formula T =
U(S -1)+R(S). Body cuts A to B and A to C
are akin to moving across a checkerboard
from a black square to a black square:
"Condition BB." Jib cut D to E is akin to
moving across a checkerboard from a black
square to a red square: "Condition BR."
Note the three-Iegger associated with "con­
dition BR."

which is the same as expression (1.2)
presented earlier.

Therefore, to reckon any taper, one
must first express it in the form of
equation (6.1). By simple substitution,
one determines U = P -R and writes
equation (6.6) directly. For instance,
for body cut A to B in Figure 5(a),
from equation (2.2) and (2.3), we
have:

14 steps = I 4 l ~t;p~
lEOInt.:J per

point

+ U steps remainde!J (7.1)

which is the initial form (6.1). One
now finds U = P-R =4-2 =2 points.

Therefore,

aJ
aJ

Z
o
r­
o
z
o
u

A o

2 7 =(17) l\)+ (51l2)
2 \ \ \ 2 \ \ 121 \ \\ 21\ \2",1 \.,,1\ "''''

CONDITION BR

E

By finding a common factor, one can
express the taper as a repeat pattern.
Again in Figure 6, for the body cut
A to C,

[3J2 steps
14 steps =

GOintJ per
POInt

+
2 ~t:p~ (7.2)

points per
point

T = n+m-I = 21+7-1 (8.1)
= 27 total steps

and

P = n-m+1 = 21-7+1 (8.2)
= 15 points.

27 = (3)(1)+(12)(2)
= 3[(I)(I)+(4)(2)J (8.7)

which is in the general form (6.6).
Any taper may be expressed in this
way. Basically, to determine a taper,
one must know m and n. Then one
can write the taper in the general form
of equation (6.1), and by a simple sub­
stitution, (finding U = P -R) write the
taper in final form (6.6).

For the sake of brevity, let us agree
to describe a taper going a whole mesh
distance, where m and n are both
whole numbers, as "condition BB"
(for black to black) and a taper going
a half mesh distance, where m and n
are both whole numbers plus one half,
as "condition BR" (for black to red).

To further illustrate the use of gen­
eral formula (6.6) in the reckoning of
tapers, consider body cut A to B in
Figure 6. For this cut, n = 21 and m
= 7, with "condition BB,"

OCI.-Nov.-Dec. 1983, 45(10-11-12)

From equation (6.1), we now write:

27 = (15)(5-1)+R. (8.3)

The largest whole number to divide 27
by 15 is (5-1) = I, so

27 = (15)(1)+R, (8.4)

andR = 12. Since (5-1) = 1,5 = 2.

And, U = P-R = 15-12 = 3, (8.5)

then 27 = (3)(1)+(12)(2) (8.6)

which is in the general form of equa­
tion (6.6). This expression implies a
sequence 2, 2, 2, 2, I, 2, 2, 2, 2, I, 2,
2, 2, 2, I as illustrated in Figure 6.
Note in expression (8.6) that there is
a common factor, 3, of U and R:

n = 21,m = 11, with "condition BB,"
T = n+m-I = 21+11-1

= 31 total steps, (9.1)

and

P = n-m+1 = 21-11+1
= II points. (9.2)

From equation (6.1) we now write

31 = (11)(5-1)+R. (9.3)

The largest number to divide 31 by II
is(5-1) = 2, so

31 = (11)(2)+R (9.4)

and, R = 9. Since (5-1) = 2,5 = 3.

And, U = P-R = 11-9 = 2. (9.5)

31



Then 31 = (2)(2)+(9)(3), (9.6)

which is the general form of equation
(6.6). Note that here 2 and 9 have no
common factors. The taper could be
expressed as 3,3,3,2,3,3,3,2,3,3,
3 as illustrated in Figure 6.

At this point one can express any
taper in the general form of equation
(6.6). As was seen in the preceeding
example of Figure 6, body cut A to B,
a common factor existed, 3, which
simplified specifying the numerical
sequence. In body cut A to C, no com­
mon factor existed.

To reckon a taper, after expressing
it in the general form of equation
(6.6), one looks for a common factor
of V and R. One could rewrite gen­
eral equation (6.6) as:

T=F [(V ' )(S-I)+(R')(S)], (10.1)

where F is a common factor of V and
R, such that V = FxV ' andR = FxR'.

Once the taper is expressed in this
form, as it was in equation (8.7), the
sequence is usually determined by in­
spection and written directly. If, for
example, one had determined a gen­
eral form expression of

and R ' plotted as, respectively, abcissas
and ordinates, the correct sequence can
be specified by writing S or S - I in the
order by which the graph lines are
crossed on the line connecting V' and R I

(on their respective axes). This process
is illustrated in Figure 7(a). Note that V'
= 17 and R I = 5 have been plotted
respectively as abcissas and ordinates,
and a line V'R I has been drawn between
them. Note also that along the line, each
time it crosses a graph line, a 1 or 2 is
written depending on whether it crossed
a vertical or horizontal line. In this case
we have: I, I, 1, 1,2, I, I, 1,2, I, I, 1,
1,2, I, 1, 1,2, I, I, 1,2.

By letting F = I, this sequence is
illustrated injib cut D to E in Figure 6. (I
have drawn the sequence starting with a
"2", that is, by reading the above se­
quence from right to left, so as to avoid
starting the taper with four single
meshes.) Note that taper D to E repre­
sents "condition BR." In Figure 7(b)
another example is presented. Consider
the following taper:

226 = 2[0)(4)+(17)(5)].(10.5)

The" graph paper technique" in this case
yields two repeats of the sequence: 4, 5,

5,4,5,5,4,5,5,5,4,5,5,4,5,5,5,4,
5,5,4,5,5,5. To cut such a taper in real
webbing without making a mistake
somewhere would be an endurance con­
test at best. In practice, it would proba­
bly be advisable to modify the net plan
somewhat to avoid such a complicated
sequence. In any event, the graph paper
technique works well enough and could
easily be expressed as an algorithm suit­
able for inclusion in a computerized
routine. (Refer to subroutine ORDER,
described in Martin and Recksiek
(1983).)

Cutting Out Trawlnet Sections

So far we have discussed the process
of describing tapers as determined by
whole-number arithmetic expressions.
At this point, methods of shaping some
specialized trawlnet sections will be pre­
sented. I do not intend to cover proce­
dures for most possible net sections;
rather, by detailing an approach to cer­
tain specific types, I leave it to the read­
ers to devise their own methodology for
their special needs. In particular, I will
discuss the trapezoidal shapes of squares
and bellies, and some quadrilateral wing
shapes. All equations used in this topic
area are summarized in Table I.

I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17

u'

I
I I I I

2'~
sequence (u R l - ( 17 5

I-.!. 1 1 numbers.,
2f' t-..!.. , 1 1

..
H(I?JrI) 2 r--:- 1 1

..!..~1t (S) (2) 2 tr-!.. 1~f-f-
I 'j 2

335 = (40)(4)+(35)(5), (10.2)

one could factor out a 5, which is a
common factor of 40 and 35 so that

335 = 5 [(8)(4)+(7)(5)], (10.3)

which is in the form of equation (10. I)
above. Therefore, there are 5 repeats
of the pattern: 4, 5, 4, 5, 4, 5, 4,
5, 4, 5, 4, 5, 4, 5, 4.

When V' and R' of equation (10.1)
are large numbers, it is sometimes dif­
ficult to write the sequence by inspec­
tion. Suppose one had the final ex­
pression

540 = 20[(17)(1)+(5)(2~.(10.4)

To arrange a sequence of seventeen l's
and five 2's by inspection takes a bit of
numerical juggling. However, an
explicit procedure is available using or­
dinary graph paper. If one sets up a regu­
lar Cartesian coordinate system with V'
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Figure 7. - Graph
paper technique to
determine sequence
order. By plotting
(V',R ' ) and con­
necting the respec­
tive axis locations,
one has only to
write the correct
number as the graph
lines are crossed.
Sample cases (a)
and (b) illustrate the
technique for differ­
ent values of V' and
R' in the general
formula T = F [(V')
(S-ll+(R')(Sl].
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The primary motivation for this sec­
tion is to aid the net planner. By being
given certain section dimensions in
numbers of meshes, the net planner must
be able to correctly determine the taper
(the number sequence). A secondary but
very important motivation in this pre­
sentation is to cut the webbing so waste
is minimal. Thus the ensuing discussion
will continually stress procedures for

making the most of the available
webbing.

Squares, Bellies
and Extensions

A square, belly, or extension section
of a trawlnet is in the shape of a
trapezoid. The cutting procedure is illus­
trated in Figure 8 for "condition BR"
and "condition BB." Also illustrated are

small trapezoids which represent the sec­
tions on a net plan.

The net plan will give us the dimen­
sion of the section in terms of meshes.
Let k = meshes along the narrow end, t
= meshes along the wide end, and n =
meshes deep.

The basic procedure is to start with a
rectangular piece of webbing, cut off a
tapered piece, and sider it to the other

(a)

k=8
~

m=5

8

BB

(b)

I 12 II 10 9 8 7 6 5 4 3 2 I I
I Ik+m-2=12 2

t=(2m-2)+k=15

Figure 8. - Exemplary trapezoidal square, belly, or extension sections. Net plans and cutting
procedure are illustrated for sections for (a) "condition BB" and for (b) "condition BR." The
section dimensions are given as: I, meshes across top or wide end; k, meshes across bottom or
narrow end; n, meshes deep. Arrows indicate how webbing piece A is cut away from the
rectangular parent piece (yielding B) to be sidered onto the other side of B to form the finished
section.
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or, m = 4'12. The fact that m is not a
whole number confirms that the taper
represents "condition BR." So, with
m = 4'12 and n = 9lf2,

Three-Ieggers on the left side of the orig­
inal piece of webbing permit easy sider­
ing back together. A final point is that the
original rectangular piece of webbing
had dimensions (k+m- 1/2) = 8+5-lf2
= 12 1/2 meshes by n = 9 meshes. There­
fore, knowledge of m is not only neces­
sary for correct tapering but for selection
of an original piece of the correct mini­
mum size.

The calculations and methodology for
Figure 8(b) "condition BR" are similar
to those just described. Given that t =

15, k = 8, and n = 9lf2, substituting
these values into the specialized "belly
top" formula (11.1) we have,

15 = (2m -2)+8

side. The arithmetic involves using k, t,
and n to determine m. Both nand mare
as defined previously. These are then
used to find the tapering expression (6.6)
as also illustrated. Once the taper is de­
termined, it only remains to cut out two
tapered pieces from a single rectangular
parent piece, reorient them, and sider
them back together. The process is illus­
trated in Figure 8.

At this point the importance of recog­
nizing a taper as "condition BB" or
"condition BR" becomes clear. In "con­
dition BB" the net builder must cut two
three-Ieggers into one edge of the origi­
nal piece, whereas in "condition BR"
piece A and piece B each have their own
three-legger. Study of Figure 8 should
make the distinction clear to the reader.

Let us now go through the calcula­
tions required for "condition BB" for a
section having dimensions t = 16, k =

8, and n = 9. The process is illustrated
in Figure 8(a). The first step is to deter­
mine m by a specialized "belly top"
equation,

T
p

n+m-I

n-m+l

9lf2 +4lf2 - I

91/2 -4lf2 + I

(12.1)

13.(12.2)
6

bers. This consideration becomes im­
portant when following a net plan. Such
a plan may specify n, t, and k. If n is
fractional, m, as determined by equation
(11.1) must be fractional. If n is a whole
number, m must be a whole number. If
these conditions are not met, the section
will lack symmetry. That is, the taper on
one side cannot be the same as the taper
on the other side. In actual practice, one
would simply calculate m from equation
(I I. I). If both nand m were either frac­
tional or not fractional, the net plan
would need readjustment. (Refer to Fig­
ure I, note 4, of Martin and Recksiek
( 1983) where net plan belly dimensions
are subjected to a test for symmetry.)

A similar situation to that just de­
scribed for Figure 8 is illustrated in Fig­
ure 9. Here two identical sections are cut
from one rectangular piece of webbing.
The dimensions of the finished sections
are the same as those illustrated in Fig­
ure 8. Note that the dimensions of the
original piece are 2(m +k) -1/2 meshes
by n meshes.

In the form of equation (6. I) we have,

Substituting our values into this for­
mula we have,

This reduces to the final form of equa­
tion (6.6) as:

or a sequence of 3, 2, 3, 2, 3 as shown
in Figure 8(a).

One cuts the tapers, from opposite
directions, to leave pieces A and B.
Piece A is slid around and sidered back
onto B to form the finished section.

( 13.2)

( 13.3)

(13.1)

18-12+m

12+5-1 16
12-5+1- 8

e = (k-n)+m.

n+m-I

n-m+1

II

T
p

and, therefore,

or, m = 5

Substituting values into this formula
we have

This reduces to the final form of equa­
tion (6.6) as: 16 = (8)(2) or a sequence
of 2, 2, 2, 2, 2, 2, 2, 2. The rest of the
operation is as illustrated in Figure 10.

Trawl Wings

Figure 10 illustrates the cutting out of
a pair of "condition BB" wings from a
single rectangular piece of webbing. The
wing has one side cut all bars. Note that
n is the depth, 12 in this example. Let­
ting e = II, and k = 18 for the respec­
tive dimensions of narrow and wide
ends, m is determined by a "wing"
formula:

( 12.4)

(12.3)13 = (6)(2)+ 1.

13 = (5)(2)+(1)(3)

or as a sequence of 3,2,2,2, 2, 2 as
shown in Figure 8(b). Just like "condi­
tion BB," one cuts two tapers from op­
posite directions. However, each new
piece has its own three-legger. These
three-Ieggers turn out to be in a correct
location for sidering the pieces back to­
gether. A starting piece is required, hav­
ing dimensions (k +m -lf2) meshes by n
meshes.

At this point the reader should note
that in equation (11.1), m can take either
I) a whole number value or 2) a whole
number plus one-half. [n these exam­
ples, illustrated in Figure 8, m took
exemplary values of 5 and 4 1/2. It turns
out that for "condition BB" belly sec­
tions, nand m are both whole numbers,
whereas for "condition BR" belly sec­
tions, neither n nor m are whole num-

This reduces to the final form of equa­
tion (6.6) as:

In the form of equation (6.1) we have,

(11.3)

( 11.5)

( 11.4)

(11. 2)

(11. I)

13 = (5)(2)+3.

t = (2m-2)+k.

13 = (2)(2)+(3)(3)

n+m-I 9+5-1 13
=---=_.

n-m+l 9-5+1 5
T
p

16 = (2m -2)+8

or, m = 5.

Since n = 9,
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(a) n=9

2(mtkl-t =25~

k=8 t=(2m-2l+k=16

16

o
8

BB

15

[J
8

BR

Figure 9. - Trapezoidal net sections illustrating the shaping of two finished identical pieces from the same rectangular
piece of webbing. Net plans and cutting/fitting procedures are illustrated for (a) "condition BB" and for (b) "condition
SR."

e=(k-n)+m =II

n=12

n = 12

4 5 6 7 8 9 10 I II

~
k-n=6 I

k =18
I 2 3 4 5 6 7 8 9 10 II 12 1314 15 16 17 18 192021 2223242526272829 30

ktetlt=30i

Figure 10. - Exemplary "condition SS" wing section assembly with net plan specifying wing dimensions.
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29 = (6)(4)+(1)(5). (14.1)

This is changed to the form of equa­
tion (6.1):

The problem now is to find the depth,
n. By expressions (1.3) and (2.1) we
have a system of two equations in two
unknowns which is solved by sum­
ming:

(15.7)

( 15.4)
(15.5)

(15.6)

(15.3)20 = (4)(5).

7 = (l1-9)+m2

n+ml-I = 20
+n-m l+I=4

2n = 24

so m2 = 5.

or, n = 12. Solving equation (15.4)
for ml, we find ml = 9. Substituting
values for e, k, and mt> into equation
(15.1) we have

This is automatically in the form of
equation (6.1) since R = 0, so by
equations (1.3) and (2.1) we have

mesh distance, m I' is associated with the
taper closest to the diagonal. In expres­
sion (13. I), note that n plays the role of
m I for the special case of cutting on the
diagonal (all bars).

For example, in Figure 13(a) we are
given e = 7, k = II, the taper closest to
the diagonal "four sets of 4B IP", or 5,5,
5, 5, which translates to

(14.2)29 = (7)(4)+ I.

Figure 12 illustrates one possible
strategy in building a pair of "condition
BB" wings when (n + I) > (e +k). There
are certainly various means available to
achieve minimal waste, and this exam­
ple is but one. Note again that the parent
piece has a bottom dimension of
(e+k+ I h).

Referring to Figure 12, to illustrate
finding the depth from the net diagram,
let us suppose that this time we are given
e, k, and the taper. These are respec­
tively, 3,9, and "4 bars I point plus six
sets of 3 bars I point." This, in our
system, translates to 5, 4, 4, 4, 4, 4, 4,
or,

In the next diagram, observe that an
exact fit cannot be made without waste,
and n > q.

The original webbing measured
(e+k+ Jlh) meshes by n meshes.

Practical difficulties may arise in cut­
ting off a corner and sidering it onto the
other end to form a parallelogram as was
illustrated in Figure 10. There is a limit
to the dimension of the top edge (or the
side edge, n, which is the same) which
must be considered. In the following
diagram, note that piece A exactly fits
back against piece B. Note too that n =
q. This turns out to be the limit on the
dimension of n for doing this kind offit.

( 15.9)

( 15.8)

12+5-1

12-5+1

16 = (8)(2).

16

8

T

P

The tapers are now cut to form two iden­
tical wings, as in Figure 13(a). The
"condition BR" example illustrated in
Figure 13(b) is handled the same way.
Here we are given e = 5, k = 8, and the
taper closest to the diagonal "three sets
of 4BlP plus 3BIP," or 5,5,5,4.

This reduces to the final form of equa­
tion (6.6) as:

Now the wings can be shaped. Piece
A is cut away and sidered back onto
the parent piece. The parent piece will
be, as before, (e +k + I V2) meshes
along the bottom. After A and B are
sidered back together the second taper
can be cut. This is reckoned in the reg­
ular way:

( 15.2)

(15. I)

( 14.3)
(14.4)

(14.5)

n+m-I = 29
+n-m+1 = 7

2n = 36

or, n = 18. Note, too, that by solving
expression (14.3) for m, we have m
= 12. The piece can now be cut out
and assembled.

Double tapers can also be made in
wing sections. Figure 13 illustrates the
forming of a double wing taper from a
single rectangular piece of webbing. The
net plan must specify e, k, and a taper
along one edge. The problem is to
reckon the second taper. To do this one
uses a "double-taper wing formul,a"
which is actually a general ization of
formula (13.1):

where e and k are defined previously and
m 1 and m 2 are horizontal mesh distances
of the two tapers. The greater horizontal

In Figure II, the maximum value of n
to make simple fits is illustrated. In this
instance the top and bottom edges of the
parallelogram are equivalent to e +k
(e +k can be likened to q in the above
diagram). For "condition BB," a simple
fit can be made if(n + I) ~(e +k). Figure
II(a) illustrates this. Figure II(b) illus­
trates a maximum of n for "condition
BR." Here, a simple fit can be made if
(n+'/2) ~ (e+k).

In both Figures 10 and II, observe
that the bottom di mension of the origi nal
piece of webbing is given by
(e+k+ JI/2).
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(a) n=12

II 2 3 4 5 6 7 8 9 10 II 12 13 14

k+e+It=14 ~

(b)

k+e+'~ = 13~

k=8

4

Figure II. - Demonstration of the maximum value ofl1. (a) "Condition BB." In this case (11+ I) = (e+k). If
(11 + I) exceeds (e+k), the wing cannot be assembled this way. As with other examples, (e+k+ I !ll) meshes are
required along the bottom of the parent piece. (b) "Condition BR." Here, (11 + !ll) = (e+k). If (11 + 'h) exceeds
(e+k), the wing cannot be assembled this way.

The remaining consideration is the
difficulty which could be experienced
when attempting to minimize waste by
fitting from a si ngle rectangular piece. ]n
the following diagram, note that piece A
fits exactly onto piece B; note also that
m 1 = q; this turns out to be the limit on
the dimension of m 1 for doing this kind
of fit.

OCI. -Nov. -Dec. 1983. 45( /0-/1-/2)

~
\~Ai~A/n ' ', I

"B"
"I

'---'
q

In the next diagram, m I > q and the fit
cannot be made this way without waste.

In light of previous discussions of fit­
ting wings having one edge all bars,
note that m 1 is taking the role of n in
those earlier limits. The constraint,
(m l + I) ~ (e+k), "condition BB," is
therefore the general case and (n + I) ~
(e +k) is a specific one for wings having
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n= 18
n+1=19

k+e=12

'-------------'
k=9

18

3 17

Ii'
III

"
15

IP)QJ 14

C(f 15
...,. 12

~
$'

9 n = 18
m=12

Figure 12.-1IIustration of "condition BB" wing assembly when (n+ I) > (e+k). As with assembling
wing sections using a single bar cut, (e+k+ 1V2) meshes are required along the bollom. Note positions
of three-Ieggers. Note the designation "4B IP+6(3B lP)" on the section plan. This is a shorthand for a
taper of "4 bars I point plus six sets of 3 bars 1 point" or a tapering sequence of 5,4,4,4,4,4,4. For
methodology of finding n knowing the taper, e, and k. see text.
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(a) n=12

( b)

k ;"11
2 3 4 5 6 7 8 9 '0;-1_1_12=--'...:.3_14_-'--- _

k+e+Ii:=19i:

r- m~:.at

~
m2=5~

II 2 3 4 5 6 7 8 9 10 'I 12 13 14 I
k+e+lt=14i:

BB

8

BR

Figure 13. - Exemplary double wing tapers. In these cases the net plans give a taper along one edge. Piece A is taken
off and sidered to the other side of the original piece of webbing. Then the second taper is cut across the joined piece to
form pieces C and AB. Note that (e+m,) = (k+m2). (a) Double taper, "condition BB." (b) Double taper, "condition
BR."

Oct.-Nov.-Dec. 1983, 45(10-//-/2) 39



Figure 14. - Double wing taper, "condition BB." Demon­
stration of the maximum value of m ,. In this case (m 1+ I) =
(e+k). If (m 1+ I) exceeds (e+k), the wing cannot be assem­
bled this way. A strategy like that illustrated in Figure 12 is
required. As with other examples, (e+k+ I '/2) meshes are
required along the bottom of the parent piece.

k= 7
3 4 5 6 7 8 9 10 II

k+e+I~=llt

2II

n =12

Figure 15. - Exemplary trapezoidal "square mesh"
trap net section. This differs from all previous exam­
ples in that the section is edged by bar cuts. Arrow
indicates how webbing piece A is cut away from the
rectangular piece (yielding B) to be sewn back onto the
other side of B to form the finished section.

3
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In the form of equation (6.1), we have

P = (30-10)/2+1 = II. (16.2)

Substituting values into this formula
we have

This reduces to the final form of equa­
tion (6.6) as
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(16.3)

(16.4)

( 16.1)

20 = (11)( I) +9.

P = (a-b)/2+ 1.

20 = (2)(1) +(9)(2)

Conclusions

The cutting/assembling procedures
for various net section types were each
deduced by careful study of the problem
at hand and applying the general taper­
ing equations (1.3,2.1,6.1,6.6, 10.1).
Most tapering problems boil down to
deducing m and n. The reader may wish
to modify the numbering conventions
and use accordingly modified equations.

or as a sequence of 2, 2, 2, I, 2, 2, 2, I,
2,2,2 as shown in Figure 15. Note that a
starting piece having dimensions T
meshes by a -P + 2 meshes is required
and that these dimensions are for web­
bing cut on the diagonal. The methodol­
ogy of sewing the cut-off piece back
onto the parent piece is similar to that of
a belly section, the major difference
being that it is done on the diagonal.

one edge all bars. In Figure 14, "condi­
tion BB" wing tapers are presented with
(ml + I) = (e+k) = 10. For higher val­
ues of m l> where (ml + 1) > (e +k), the
fits cannot be made as illustrated. A
strategy like that illustrated in Figure 12
will be required.

Cutting Out Square
Mesh Net Sections

One final consideration in applying
the tapering principles presented here is
that of a net section composed of
"square meshes," as in a tennis net. Re­
cent work by Robertson (1982) on
square mesh codend design could be
applied to net sections other than
codends. Robertson's Figure 7 shows a
trapezoidal upper codend section of
square meshes. An example, a section
from a Great Lakes trap net from Stewart
and Visel!, is pictured in Figure 15. In
this case, letting a = 30 meshes along
the wide end and b = 10 meshes along
the narrow end, we have a shape like that
of a trawl belly or extension section. The
depth is given by T = 20 meshes. Note
that the total number of steps required for
the taper is equal to the depth (hence 'T"
as defined previously). The number of
points, P, is given by a special square
mesh belly formula:

'Stewart, L., and T. Visel. 1980. A guide to the
conslruction of trap nets (Great Lakes Bar
Type). Stationary gear workshop draft, 13 p.
University of Connecticut Marine Advisory
Service, Marine Science Institute, Groton, CT
06340.
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