
A Microcomputer Program for the Calculation
of a Trawlnet Section Taper

DAVID K. MARTIN and CONRAD W. RECKSIEK

TSTEPS= 13 P=5 S=3 R=3 U=2
(RPRI=3 UPRI=2 F= I)

final output
line.

third
prompt line.

user entered
8; screen
clears and,

user entered
9; screen
clears and,

second
prompt line.

user entered
16; screen
clears and,

ENTER DEPTH

ENTER NARROW
END

ENTER WIDE END prompt line.

TAPER IS STEPS/POINTS

The next example is from Figure

TAPER EQUAL TO:
32323

WE= 16 NE=8 DEPTH=9 output
lines
begin ....

16

8

calculations. Then, selected variables
along with the tapering sequence are
displayed on the monitor screen. The
first example is taken from Figure 8(a) of
"Shaping and assembling webbing"
(Recksiek, 1983):

Program Function: Some Examples

After turning on the machine and
loading the program, the user is prompt­
ed for the dimensions of the piece of
webbing. When these have been en­
tered, the machine performs the various

I Mention of t~ade names or commercial firms
does not imply endorsement by the National
Marine Fisheries Service, NOAA.

The Microcomputer System

We chose a readily available, low-cost
microcomputing system which, exclu­
sive of the television monitor, can be
purchased for under $200. We used a
Timex-Sinclair TS 10001 having I K
bytes of random access memory
(RAM). Plugged into the small (17 x 17
cm) keyboard/computing hardware
package is an expandable memory of 16
K bytes. (The expandable 16 K RAM
pack is required for the application being 9
described in this report.) An inexpensive
cassette tape recorder is interfaced with
the machine and the programs are stored
on cassette tape. The system's television
monitor can display 31 columns by 21
rows of characters.

sist of flowcharts of the main program
and its subroutines, which are outlined
in an accompanying text discussion.
Finally, we present the actual program
code as Table I.

The notation and specialized terms
used in this paper will be the same as
those of Recksiek (1983). (Variables in
this paper are always written in upper
case since the system we used cannot
display lower case characters.)

David K. Martin is with the College of Resource
Development, University of Rhode Island,
Kingston, RI 02881, and Conrad W. Recksiek is
Associate Professor, Department of Fisheries,
Aquaculture, and Pathology, University of
Rhode Island, Kingston, RI 02881.

In this paper we describe a computer
program which enables the user to find
the correct taper of a trawlnet belly or
extension section, given the dimensions,
in meshes, of wide end, narrow end, and
depth.

Our purpose in this report is fourfold:
I) To illustrate how general princi­

ples of web shaping and assembly, as
described in the companion article,
"Shaping and assembling webbing"
(Recksiek, 1983), can be expressed as
functional computer program al­
gorithms;

2) to describe the program logic,
through the flowchart medium, so the
readers, who may so desire, can create
their own code in the computer language
oftheir choice according to their particu­
lar hardware constraints;

3) to discuss the logic in a general
context so the readers may expand the
program described for other require­
ments, e.g., reckoning wing section
tapers; and

4) to report in tabular format, actual
code in a version of BASIC program­
ming language used in an inexpensive
microcomputer system.

We will first describe the microcom­
puter system we used. We will then illus­
trate the use of our program by showing
how some exemplary problems are
solved with the system. The figures con-

Introduction

42 Marine Fisheries Review



WE= 15 NE=8 DEPTH=9.5 output
lines begin
showing
revised
DEPTH;

8(b) of Recksiek (1983). Here, note
that the user has input 10 for the depth,
N. The user also has input T = 15 and
K = 8. A belly section of these dimen­
sions cannot be symmetric, i.e., the
taper cannot be the same on both sides.
The program executes a test for sym­
metry. We structured the program to
revise the input depth in this circum­
stance so that dimensions of a sym­
metric piece could be displayed:

ENTER WIDE END prompt line.

Table 1.- BASIC symbolic language code for computer program designed to generate a number sequence which
represents a webbing taper for a trapezoidal section.

1470 FOR L ~ 1 TO KF
1480 PRINT AT V. H; SEQ(L)
1490 LET H = H + 2
1500 IF H = 31 THEN GO TO 1520
1510 GOTO 1540
1520 LET H = 1
1530 LET V ~ V + 1
1540 NEXT L
1550 STOP
4000 REM
4002 REM SUBROUTINE RENAME
4004 REM
4010 IF U < R THEN GO TO 4080
4020 LET X ~ R
4030 LET R ~ U
4040 LET U ~ X
4050 LET X = AVALUE
4060 LET AVALUE ~ BVALUE
4070 LET BVALUE = X
4080 RETURN
4090 REM
5000 REM SUBROUTINE FACTOR
5001 REM
5010LETF~1

5020 FOR I ~ 2 TO U
5030 IF UPRIME <= 1 THEN GO TO 5110
5040 IF (UPRIMEII) - INT(UPRIMEII) >< 0 THEN GO

TO 5100
5050 IF (RPRIME/I) - INT(RPRIME/I) >< 0 THEN GO

TO 5100
5060 LET UPRIME = UPRIMEII
5070 LET RPRIME = RPRIME/I
5080 LET F = F • I
5090 GO TO 5030
5100 NEXT I
5110 RETURN
5120 REM
6000 REM SUBROUTINE ORDER
6001 REM
6010 DIM A(200)
6020 DIM SEQ(300)
6030 LET INDEX = 0
6040 LET MF ~ UPRIME/RPRIME
6050 LET LASTR = RPRIME - 1
6060 FOR I = 1 TO LASTR
6070 IF INT(MF'I) = INT (MF·(I-l)) THEN GO TO

6100
6080 LET INDEX = INDEX + 1
6090 LET A(INDEX) ~ BVALUE
6100 LET INDEX ~ INDEX + 1
6110 LET A(INDEX) = AVALUE
6120 NEXT I
6130 IF UPRIME = 0 THEN GO TO 6160
6140 LET INDEX = INDEX + 1
6150 LET A(INDEX) = BVALUE
6160 LET INDEX ~ INDEX + 1
6170 LET A(INDEX) ~ AVALUE
6180 LET KF ~ 0
6190 FOR I ~ 1 TO F
6200 FOR J = 1 TO INDEX
6210 LET KF = KF + 1
6220 LET SEQ (KF) ~ A (J)
6230 NEXT J
6240 NEXT I
6250 RETURN

1000 REM "BELLY"
1005 REM MAIN PROGRAM FOR SQUARES, BELLIES

AND EXTENSIONS
1010 REM
1020 PRINT AT 10,8; "ENTER WIDE END"
1030 INPUT T
1035 REM "CLS" MEANS CLEAR SCREEN ONLY
1040 CLS
1050 PRINT AT 10,7; "ENTER NARROW END"
1060 INPUT K
1070 CLS
1080 PRINT AT 10,10; "ENTER DEPTH"
1090 INPUT N
1100 CLS
1110 LET M = ((T - K)/2) + 1
1120 IF M = INT M THEN GO TO 1150
1130 IF N ~ INT N THEN GO TO 1160
1140GOTO 1180
1150 IF N = INT N THEN GO TO 1180
1160 LET N = N - (0.5)
1170 PRINT AT 3.1; "SUBTRACTED 1/2 MESH FROM

DEPTH"
1180 PRINT AT 1,2; "WE~"; T; "NE~"; K;

"DEPTH~"; N
1190 IF N = M THEN GO TO 1250
1200 IF N > M THEN GO TO 1270
1210 PRINT AT 5.5; "TAPER IS STEPS/MESHES"
1220 LET M2 = N
1230 LET N2 = M
1240 GO TO 1300
1250 PRINT AT 5,4; "TAPER IS A STRAIGHT BAR"
1260 GO TO 1280
1270 PRINT AT 5,5; "TAPER IS STEPS/POINTS"
1280 LET M2 ~ M
1290 LET N2 = N
1300 LET TSTEPS ~ N2 + M2 - 1
1310 LET P = N2 - M2 + 1
1320 LET S = (INT(TSTEPS/P)) + 1
1330 LET R = TSTEPS - ((S - 1)' P)
1340 LET U ~ P - R
1350 PRINT AT 7,1; "TSTEPS ="; TSTEPS; "P ~"; P;

"S ="; S; "R ="; R; "U ="; U
1360 LET AVALUE ~ S
1370 LET BVALUE = S - 1
1371 REM
1372 REM CALL RENAME SUBROUTINE
1373 REM
1380 GOSUB 4000
1390 LET UPRIME = U
1400 LET RPRIME ~ R
1401 REM
1402 REM CALL FACTOR SUBROUTINE
1403 REM
1410 GOSUB 5000
1420 PRINT AT 8,4; "(RPRI = "; RPRIME; "UPRI ~";

UPRIME; "F ~"; F; ")"
1421 REM
1422 REM CALL ORDER SUBROUTINE
1423 REM
1430 GOSUB 6000
1435 REM CODE FROM HERE TO STATEMENT 1550 IS

USED TO OUTPUT ARRAY S
1440 PRINT AT 13,0; "TAPER EQUAL TO:"
1450 LET H = 1
1460 LET V = 14

message
signaling
change ....

third
prompt line.

user entered
10; screen
clears and,

user entered
8; screen
clears and,

second
prompt line.

user entered
15; screen
clears and,

ENTER DEPTH

ENTER NARROW
END

10

SUBTRACTED 1/2
MESH FROM DEPTH

8

15

TAPER IS STEPS/POINTS

TSTEPS= 13 P=6 S=3 R= I U=5
(RPRI= 1 UPRI=5 F= 1)

TAPER EQUAL TO:
222232

final output
line.

an all bar edge. The input lines have
been omitted for the sake of brevity:

TSTEPS= 12 P= I S= 13 R=O U= I
(RPRI=O UPRI= I F= I)

In the next example, the program

The program has the capability to
deal with pieces having all bar edges
or jib cut edges. The following exam­
ple illustrates output for a piece having

WE= 18 NE=7 DEPTH=6.5 output
lines
begin ....

TAPER IS A STRAIGHT BAR

TAPER EQUAL TO:
12

final
output
line.

Oct.-Nov.-Dec. 1983, 45(/O-lJ-/2) 43



TSTEPS=13 P=3 S=5 R=I U=2
(RPRI= I UPRI=2 F= I)

identifies the taper as being a jib cut
and the message, TAPER IS STEPS/
MESHES, is displayed:

-@

I----@

UP RIME. RPRI"'~'•.!F-l @

I-----@

l---q])
'------'-,....---'-'---'

!---®
'-'---'---,---'-_/

T$TEPS =N2 +1.42:1

p= N2 -1042 .. 1

S =fHTOSTEPS , P~ .. 1 _@
R=rSTEPS-[IS-O+P]

u= P-R

CAll ORDER

5£0(2001. UPRIME, RPRIMe, AVAlUE. BVAlue. F. KF

abies may require some additional
arithmetic.)

Figure I. - Main program.
This program calculates the
various tapering values, U, R,
S, F for trawl net belly or
extension-shaped net sections
upon input of the dimensions,
in numbers of meshes. The
latter are N, K, T or, respec­
tively, the "depth, narrow
end, wide end." A number se­
quence which represents the
taper is displayed as output.
This sequence consists of ini­
tial elements of array SEQ.

1) Prompts and inputs ofT, K, N.
2) Calculate horizontal mesh dis­

tance M as a function ofT and K. This is
equation (11.1), the "belly top formula"
of Recksiek (1983).

3) Test of N being a whole number.
(Other programming languages differen­
tiating between real and integer vari-

does the simple arithmetic of the "belly
top formula" (equation (11.1) of Reck­
siek, 1983) and the general tapering
equations.

The subroutines perform tasks which
must be done by any program doing ta­
pering calculations. These subroutines
are called at critical points in the main
program. In the following sections of
this article, we summarize the functions
of the various program modules.

Main Program

The main program calculates the var­
ious tapering values U, R, S, F for
trawl net belly or extension pieces upon
input of the dimensions. The latter, ex­
pressed in numbers of meshes, are, re­
spectively, N, K, T for "depth, narrow
end, wide end." A number sequence
which represents the taper is generated
and displayed as output. This sequence
consists of initial elements of an array,
SEQ. The flowchart of this routine is
presented in Figure I. Referring to that
figure, the following features are of
interest:

final
output
line.

output
lines
begin ....

TAPER IS STEPS/MESHES

Program Logic: A Flowchart

The logic used in the microcomputer
program is portrayed in the figures. An
expression of this logic in BASIC lan­
guage code is presented in Table 1. This
program code, when loaded into a
Timex-Sinclair TS 1000 microcomputer
system, produces the monitor displays
described in the previous section.

Our intention in this section is to ex­
plain the flowchart so the prospective
users can adapt the logic to serve their
own ends. Basically, the logic parallels
the theoretical development of Recksiek
(1983). Readers are encouraged to
thoroughly familiarize themselves with
that article, particularly the introductory
sections and the section, "Squares, Bel­
lies, and Extensions."

As a matter of interest, we would like
to mention that our preliminary coding
of the flowcharted logic was accom­
plished in FORTRAN symbolic pro­
gramming language on a mainframe
computer. Our goal in that work, which
is presently in progress, is to use that
system's pen plotter to draw finished net
sections. For the purpose of the applica­
tion described in this article, we wrote
the BASIC code directly from our FOR­
TRAN code listing.

The program is structured as a main
program module with three subroutines.
We developed this structure with the po­
tential user/programmer in mind. The
main program can be easily modified to
do other tasks, e.g., calculating wing
tapers. This particular main program

WE= 18 NE=4 DEPTH =6

TAPER EQUAL TO:
454

44 Marine Fisheries Review



SUBROUTINE RENAME

T
U<R

F

IDUMMY = R

R=U

U =IDUMMY

IDUMMY =AVAlUE

AVAlUE =BVAlUE

BVAlUE =IDUMMY

Figure 2. - Subroutine RENAME.
Arguments: U, R, AVALUE,
B VALUE. The subroutines FACTOR
and ORDER require that arguments
derived from U and R must be or­
dered one greater than or equal to the
other. If the arguments are incor­
rectly ordered, the subroutine re­
verses their values.

SUBROUTINE FACTOR

F
- INT(UPRIMEII) =0 "':>---~

UPRIME 'UPRIMEII

RPRIME ' RPRIMEIl

F : F • I

Figure 3.-Subroutine FACTOR. Arguments: UPRIME, RPRIME,
U, F. This subroutine determines F, RPRIME, and UPRIME such that
U = F x UPRIME and R = F x RPRIME. That is, F is the largest
common factor of U and R.

4) Test of symmetry. If M contains a
half mesh, then N must contain a half
mesh. If M has no half mesh, then N
must contain no half mesh. In other
words, M and N must both be either
whole numbers or both whole numbers
plus a half mesh. In this logic, if the
condition (both whole or both not
whole) cannot be met, N is "adjusted"
by subtraction of O. 5. As was illustrated
earlier in the second problem example,
the user is informed of this having taken
place. This is a test of symmetry in that
the tapers on both side edges of the piece
must be the same.

5) The taper is a straight bar when N
= M; it is a body cut, designated as
"STEPS/POINTS," when N > M; it is a
jib cut, designated as "STEPS/
MESHES," when N < M.

6) Fundamental arithmetic. Calcula­
tion of TSTEPS (for total steps), P, S, R,
U based upon principles embodied in
equations (1.3) through (6.6) of Reck­
siek (1983).

Oct.-Nov.-Dec. 1983,45(10-11-12)

7) Display of variables and calcu­
lated values.

8) AVALUE and BVALUE defined.
These are arguments used in subroutines
RENAME and ORDER. The sub­
routines FACTOR and ORDER require
that arguments derived from U and R
must be ordered one greater than or
equal to the other. (The true values of U,
R, and S are no longer of interest to the
user by the time subroutine RENAME is
called; hence they can be renamed to
satisfy order requirements of the sub­
routines.)

9) Subroutine RENAME checks val­
ues of its arguments for correct relative
size. Values are reversed, or "renamed,"
if necessary.

10) Arguments for subroutine FAC­
TOR are defined.

I I) Subroutine FACTOR determines
F such that F is a factor common to U and
R and that U = F x UPRIME and R =
FxRPRIME.

12) Display of calculated values.

13) Subroutine ORDER determines
the actual number sequence of the taper.
Argument KF is the total number of non­
zero elements of array SEQ, i.e., there
are KF numbers in the sequence.

14) Display of sequence array SEQ.

Subroutine RENAME

Arguments: U, R, AVALUE,
BVALUE. The subroutines FACTOR
and ORDER require that arguments de­
rived from U and R must be ordered one
greater than or equal to the other. If the
arguments are incorrectly ordered, this
subroutine reverses their values (Fig. 2).

Subroutine FACTOR

Arguments: UPRIME, RPRIME, U,
F. This subroutine determines F,
RPRIME, and UPRIME such that U =
FxUPRIME and R = FxRPRIME.
That is, F is the largest common factor of
U and R (Fig. 3).

45



Subroutine ORDER

Arguments: SEQ, UPRIME,
RPRIME, AVALUE, BVALUE, F, KF
This subroutine generates KF nonzero
elements of array SEQ such that each
element represents one number in a ta­
pering sequence. The reader is referred
to Recksiek (1983) where equations
(10.1) through (10.5) are discussed.
That discussion includes a reference to
the paper's Figure 7. This subroutine
essentially performs the task embodied
in that figure. Referring to Figure 4 in
this paper, the following features are of
interest:

I) Slope MF is determined by divi­
sion. (This slope can be Iikened to
examples illustrated in Figure 7 of Reck­
siek, 1983.)

2) Loop determines sequence, ex­
pressed as elements of primary array A,
over the open interval UPRIME,
RPRIME (but not over the closed inter­
val UPRIME, RPRIME (see next step
3». INDEX is the counter.

3) Last values of array A are deter­
mined for UPRIME and RPRIME. The
highest and final value of I DEX is de­
termined here. This program determines
which of the two comes first in cut-and­
dry fashion as shown in the flowchart. A
person would make an "aesthetic"
choice based, more or less, on the look
of the taper. Whi Ie this touch can proba­
bly be programmed, we thought the
extra complication did not warrant the
effort.

4) INDEX elements of array A are
reproduced F times to produce the re­
quired sequence KF = FxlNDEX ele­
ments of array SEQ.

Conclusions

The program described in this paper
can be easily modified for other tasks.
As mentioned earlier, the point of mod­
ification would be in the main program.
For instance, the main program can be
easily modified to reckon wing tapers.

The main program may be expanded
to perform jobs other than, or in addition
to, finding tapering sequences. For
example, the user may wish to consider
all dimensions of the piece, i.e., depth,
wide end, narrow end, and taper, as

46

Figure 4.-Subrou-
tine ORDER. Ar-
gument : SEQ,
UPRIME, RPRIME,
AVALUE, BVALUE,
F, KF. This subroutine
generates KF nonzero
elements of array
SEQ such that each
element represents
one number in a taper­
ing sequence.

being potential unknowns. On user­
specified option, the program, given
three dimensions, could find the desired
but unknown fourth dimension.

Other capabilities could also be
added. For example, hanging ratio cal­
culations could be incorporated to reck­
on actual dimensions (for hanging the
web onto headrope and fishing line,
etc.). Or, twine weight parameters could
be entered to estimate the amount of
material actually required to construct
the piece.

Acknowledgments

We thank Marion McHugh for prepar­
ing the drawings. This research was
supported by the Office of Sea Grant

SUBROUTINE ORDER

SEa (200), VPRIME. RPRIME

"VALUE. BYAlUE. F. KF

CD

®

UPRIME :; 00>----< _

@

(National Oceanic and Atmospheric
Administration, NA8IAA-D-00073).
This publication is Contribution number
2142 of the Rhode Island Experiment
Station.

Literature Cited

Recksiek, C. W. 1983. Shaping and assembling
webbing. Mar. Fish. Rev. 45(10-11-12):26­
41.

Marine Fisheries Review




